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What are Adversarial Examples

* Deep networks are vulnerable to adversarial examples.
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What are Adversarial Examples

 Dataset: CIFAR-10
e Network: ResNet-50
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How to Generate Adversarial Examples

* Train a model
* min Loss(f(x), y; ©)
* Minimize the loss function w.r.t. model parameters 6

* Generate adversarial examples
* Most common method: Gradient-based method, e.g., FGSM.
* max Loss(f(x+6), y; 0)
* Maximize the loss function w.r.t. adversarial perturbation 6



Defense by Adversarial Training

» Adversarial Training (AT) is a strong defense against adversarial examples.
* Core idea: Train with adversarial examples.
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Defense by Adversarial Training

 However, AT involves a min-max optimization, which is
extremely expensive.

Iterativ '
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How to design a defense method that
gets rid of AT but is still robust against
strong adversarial examples?



Inspiration from Image Harmonization

* Image harmonization: Match a foreground object to a new
background scene.

* A style code is extracted by a style encoder and is passed to the
adaptive instance norm layers of the harmonizer network.
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Adaptive Batch Normalization Network
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Adaptive Batch Normalization Network

¢ Standard BN I . Pre-trained substitute model
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Adaptive Batch Normalization Network

¢ Adve I'Sd ry WOUld pertu rb the i Pre-trained substitute model
target model’s BN. N

* The substitute model’s BN ﬂﬂ“ﬂﬂ |}

are relatively unaffected.

e The substitute model is
trained on large-scale input
datasets different from the

target task dataset, making it |
harder for adversary to , III
transfer the attack.

* The model is trained on only
clean data without using AT.

Frozen
conv layer

Trainable
conv layer

Adaptive
BN layer

BN
statistics

— [0 Em 1]

> Output

Target model

11



Pre-trained substitute model
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Training Time Complexity
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* Let us set that each network pass (i.e., a
forward pass or a backward pass) has N

computational complexity. Mll““ﬂ_“lﬂlnl_)
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° ABNN: Target model
2N + N = 3N

* PGT-AT: ' = s (2 + a - sign(V.L(z,y;0)))
2N x tmax + 2N = 2N (tmax + 1)

e PGT-AT has g* = arg min E{Lijm} [I";[ﬂlélé{ L($ + 5 yﬁ)‘
2N (tmax + 1) /3N = 0.67 (tmax + 1) ‘

times more training complexity than ABNN

12



Results

* Dataset: UCF-101 e
OUDefend [21] 62.0 13.6 24N
* Target model: 3D ResNeXt-101 ABNN (Ours) | 683 244 N

* Substitute model: 3D ResNet-18 pre-trained on Kinetics-400
e Attack: ROA with 10% area, tmax=5
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Res u Its Table 1. Evaluation results (%) under the PGD attack on the CIFAR-

10 dataset.
Method Clean PGD Training cost
No Defense 93.4 0.0 2N
PGD-AT [23] 83.3 51.6 12N
ABNN (Ours) 87.5 31.5 3N

Table 2. Evaluation results (%) under the PGD attack on the UCF-
101 dataset.

Method Clean  PGD Training cost
No Defense [14] 93.0 0.0 2N
OUDefend [21] 62.0 58.6 24N
ABNN (Ours) 68.3 43.4 3N




Conclusion

The proposed adversarial defense ABNN is a non-AT method that
gets rid of the extremely time-consuming AT.

Compared to traditional AT-based approaches, the proposed ABNN
achieves higher clean data performance, better robustness
generalization, and significantly lower training time complexity.
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(a) Better clean data (b) Better robustness (c) Better training
performance generalization efficiency
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