Exploring Semantic Segmentation on the DCT Representation

Shao-Yuan Lo, Hsueh-Ming Hang

National Chiao Tung University

MMAsia 2019 Oral December 18, 2019

Motivation

- Compressed domain analytics: Perform computer vision tasks (e.g., object classification, detection, tracking, segmentation) in the compressed domain directly.
- No need to perform decoding (reduce computation)
- Reuse encoded information
- Potentially decrease the complexity of computer vision systems (our research goal)

Motivation

• Semantic segmentation: Pixel-level predictions.

Input: RGB image

Output: Segmentation result

Motivation

• Extract features from compressed representations.

DL model for compressed data

Input: Compressed data e.g., JPEG (DCT coef.)

Output: Segmentation results

JPEG Compression

- Convert the color space from RGB to YCbCr.
- Perform block-wise (8×8 pixels) DCT.
- Quantize the DCT coefficients by a quantization matrix.
- Encode the coefficients by entropy encoding.

Network

- EDANet [Lo et al. 2019]
- A CNN for semantic segmentation
- High efficiency and low complexity

Dataset

- Cityscapes [Cordts et al. 2016]
- 19 classes (road, car, person, building, traffic sign, etc.)
- 5000 images
- Resolution: 1024 x 2048

DCT coefficients

• Take the DCT coefficients of images as the inputs of a CNN.

DCT coefficients

• CNN can use DCT coefficients to do segmentation but get lower accuracy.

Input	mloU (%)
RGB	63.7*
DCT	59.3

*Models are trained with one-stage and through just 2/3 number of iterations compared to that in EDANet [16] since we compare the relative accuracy in our analysis.

Frequency Component Rearrangement

- Rearrange frequency information on the 3rd dimension.
- Input tensor: 512 x 1024 x 3 -> 64 x 128 x (64x3)

Frequency Component Rearrangement

Frequency Component Rearrangement

• The accuracy drops a lot.

Input	mloU (%)
RGB	63.7
DCT	59.3
FCRed DCT	37.8

DCT-EDANet

- Remove downsamplings
- Increase depths

DCT-EDANet

• DCT-EDANet obtains a dramatic improvement.

Architecture	Input	mloU (%)	Multi-Adds	
EDANet	RGB	63.7	8.97B	
EDANet	DCT	59.3	8.97B	
EDANet	FCRed DCT	37.8	0.20B	
DCT-EDANet	FCRed DCT	61.6	8.52B	

DCT-EDANet

- Take the first 16 low-frequency coefficients of each 8×8 block as inputs.
- The accuracy gap between EDANet-DCT and DCT-EDANet is widened from 2.3% to 4.0%, which indicates DCTEDANet are more favorable when the inputs are condensed

-	-415	-30	-61	27	56	-20	-2	0	I
	4	-22	-61	10	13	-7	-9	5	
	-47	7	77	$^{-25}$	-29	10	5	-6	
	-49	12	34	-15	-10	6	2	2	
	12	-7	-13	-4	-2	2	-3	3	
	-8	3	2	-6	-2	1	4	2	
	-1	0	0	-2	-1	-3	4	-1	
	0	0	-1	-4	-1	0	1	2	

Input	mloU (%)
EDANet-DCT-1/4coef	55.0
DCT-EDANet-1/4coef	59.0

Frequency Component Selection

- Different combinations of DCT coefficients as inputs.
- Purpose: Discover important coefficients so that we can take only these as inputs.

				Y								Cb)							Cr	-				
ſ	$-415 \\ 4 \\ -47$	$-30 \\ -22 \\ 7$	$-61 \\ -61 \\ 77$	$27 \\ 10 \\ -25$	$56 \\ 13 \\ -29$	$-20 \\ -7 \\ 10$	$^{-2}_{-9}$ 5	$\begin{bmatrix} 0 \\ 5 \\ -6 \end{bmatrix}$	-415 4 -47	$-30 \\ -22 \\ 7$	$-61 \\ -61 \\ 77$	$27 \\ 10 \\ -25$	$56 \\ 13 \\ -29$	$-20 \\ -7 \\ 10$	$-2 \\ -9 \\ 5$	$0 \\ 5 \\ -6$	$\begin{bmatrix} -415 \\ 4 \\ -47 \end{bmatrix}$	$-30 \\ -22 \\ 7$	$\begin{array}{c} -61 \\ -61 \\ 77 \end{array}$	$27 \\ 10 \\ -25$	$56 \\ 13 \\ -29$	$-20 \\ -7 \\ 10$	$-2 \\ -9 \\ 5$	$\begin{bmatrix} 0\\5\\-6 \end{bmatrix}$	
	-49	12	34	-15	-10	6	$\frac{1}{2}$	2	-49	12	34	-15	-10	6	$\frac{1}{2}$	2	-49	12	34	-15	-10	6	$\frac{1}{2}$	2	
	$\frac{12}{-8}$	-7 3	-132	$-4 \\ -6$	$-2 \\ -2$	$2 \\ 1$	$-3 \\ 4$	$\frac{3}{2}$	$\frac{12}{-8}$	$-7 \ 3$	$rac{-13}{2}$	$-4 \\ -6$	$-2 \ -2$	$2 \\ 1$	-3 4	$rac{3}{2}$	$\begin{vmatrix} 12 \\ -8 \end{vmatrix}$	$-7 \ 3$	${-13 \over 2}$	$-4 \\ -6$	$-2 \ -2$	$2 \\ 1$	$-3 \\ 4$	$\begin{array}{c}3\\2\end{array}$	
	$-1 \\ 0$	0 0	$0 \\ -1$	$-2 \\ -4$	$egin{array}{c} -1 \ -1 \end{array}$	$-3 \\ 0$	$4 \\ 1$	$egin{array}{c} -1 \\ 2 \end{array}$	-10	0 0	$0 \\ -1$	$-2 \\ -4$	$-1 \\ -1$	$-3 \\ 0$	$4 \\ 1$	$rac{-1}{2}$	$\begin{bmatrix} -1\\ 0 \end{bmatrix}$	0 0	$0 \\ -1$	$-2 \\ -4$	$-1 \\ -1$	$-3 \\ 0$	4 1	$\begin{bmatrix} -1 \\ 2 \end{bmatrix}$	

Model	# input coef.	#Y coef.	# Cb coef.	# Cr coef.	mloU (%)
DCT-EDANet	192	64	64	64	61.6
M-64-0-0	64	64	0	0	59.8
M-49-9-9	67	49	9	9	60.6
M-36-16-16	68	36	16	16	61.2
M-25-25-25	75	25	25	25	59.7
M-16-16-16	48	16	16	16	59.0
M-16-4-4	24	16	4	4	59.9
M-16-1-1	18	16	1	1	57.4
M-9-4-4	17	9	4	4	58.7
M-0-0-16	16	0	0	16	46.4 ₁₇

Frequency Component Selection

- We found the best input component proportion is around **50:25:25**, providing a guideline for future studies on DCT-domain analytics.
- This result is consistent with a principle of the JPEG compression algorithm, in which the chroma information is less critical and thus subsampled in the JPEG codec.

Quantization

- In the JPEG codec, if the compression is lossy, the quantization step is included.
- Compare DCT coefficients quantized by different Q-factors and their corresponding decompressed RGB images.

Quantization

• The proposed method can tolerate serious quantization errors.

Model	Quality factor	mloU (%)
DCT-EDANet	No	61.6
M-QF70	70	60.5
M-QF50	50	60.6
M-QF30	30	60.0

Conclusion

- To our knowledge, this paper is the first to explore semantic segmentation on the DCT representation.
- We rearrange the DCT coefficients by using FCR. Then, we modify EDANet by discarding all the downsampling operations and deepening the network to maintain the network capacity.
- The elaborated analysis of DCT coefficient selections provides a guideline for future studies on compressed-domain analytics

Thanks for your attention