Efficient Dense Modules of Asymmetric Convolution for Real-Time Semantic Segmentation

Shao-Yuan Lo, Hsueh-Ming Hang, Sheng-Wei Chan, Jing-Jhih Lin

National Chiao Tung University

MMAsia 2019 Oral

December 17, 2019

Introduction

Input: RGB image

Output: Semantic segmentation

Self-driving applications

Efficiency

Accuracy

as high as possible

Inference Time

real-time

Model Size

low memory consumption

EDANet

EDANet

• Efficient Dense modules of Asymmetric convolution, the second proposed network.

EDA Module

- Point-wise convolution layer
- Dilated convolution
- Asymmetric convolution
- Dense connectivity

Asymmetric Convolution

• Factorize a standard 2D convolution kernel into two 1D convolution kernels.

•
$$\sum_{i=-M}^{M} \sum_{j=-N}^{N} W(i,j)I(x-i,y-j) = \sum_{i=-M}^{M} W_x(i) \left[\sum_{j=-N}^{N} W_y(j)I(x-i,y-j) \right]$$

Dense Connectivity

• Each module concatenates its input and new learned features together to form final output. [Gao et al.]

•
$$y_m = [H_m(y_{m-1}), y_{m-1}]$$

• Gather multi-scale information together.

Downsampling Block

- Two modes.
- Win > Wout (Wconv = Wout)

Input

[1]

• Win < Wout (Wconv = Wout - Win)

(3, 15) (15, 60)

Downsampling

[1/4]

Downsampling Block

[1/2]

(60, 260)

EDA Block 1

[1/4]

[1/8]

[1/8]

[1/8]

Downsampling Block

- Pros: Enable network to have larger receptive fields.
- Cons: Lose spatial information.

(3, 15) (15, 60)

Downsampling

[1/4]

m

Downsampling Block

[1/2]

Input

[1]

(60, 260)

EDA Block 1

[1/4]

Decoder

- No decoder.
- Use bilinear interpolation to recover resolution.

Ablation Study

- Core module
- Extra context module
- Decoder
- Downsampling Block

Cityscapes Dataset

- Class: 19
- Training data: 2975
- Validation data: 500
- Test data: 1525
- Resolution: 1024 x 2048

Core Module

EDA module

1x1 conv.

3x3 conv.

3x3 conv. (D)

Concat.

• BN

• BN

• BN

ReLU

Dropout

ReLU

ReLU

(Win)

(Win, k)

(k, k)

(k, k)

(Wout = Win + k)

Core Module

Network	mloU (%)	# Param.	# Multi-Adds
EDANet	65.10	0.68M	8.97B
EDA-non-asym	65.11	0.81M	11.41B
EDA-non-dense	63.92	0.73M	8.87B

Extra Context Module

Extra Context Module

Network	mloU (%)	# Param.	# Multi-Adds
EDANet	65.10	0.68M	8.97B
EDA-shallow	58.09	0.55M	7.77B
EDA-ASPP	60.64	3.41M	41.42B

Decoder

EDA-ERFdec

1				
	17	Deconvolution (upsampling)	64	256x128
	18-19	2 x Non-bt-1D	64	256x128
	20	Deconvolution (upsampling)	16	512x256
	21-22	2 x Non-bt-1D	16	512x256
	23	Deconvolution (upsampling)	С	1024x512

(ERFNet decoder)

[Romera et al.]

Decoder

Network	mloU (%)	# Param.	# Multi-Adds
EDANet	65.10	0.68M	8.97B
EDA-ERFdec	65.56	0.78M	12.95B

Downsampling Block

EDA-DenseDown [Gao et al.]

Layers	Output Size	DenseNet-121	DenseNet-169	DenseNet-201	
Convolution	112×112	7×7 conv, stride 2			
Pooling	56×56		$3 \times 3 \max p$	ool, stride 2	
Dense Block	56 × 56	$1 \times 1 \text{ conv}$	$1 \times 1 \text{ conv}$	$1 \times 1 \text{ conv}$	
(1)	50 × 50	$3 \times 3 \text{ conv}$	$3 \times 3 \text{ conv}$	$3 \times 3 \text{ conv}$	
Transition Layer	56×56		1×1	conv	
(1)	28 imes 28		2×2 average	pool, stride 2	
Dense Block	28×28	$1 \times 1 \text{ conv}$ 12	$\begin{bmatrix} 1 \times 1 \text{ conv} \end{bmatrix}_{\times 12}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \end{bmatrix} \times 12$	
(2)	20 × 20	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{-12}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{-12}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{-12}$	
Transition Layer	28 imes 28	$1 \times 1 \text{ conv}$			
(2)	14×14	2×2 average pool, stride 2			
Dense Block	14×14	$\begin{bmatrix} 1 \times 1 \text{ conv} \end{bmatrix}_{\times 24}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \end{bmatrix}_{\times 32}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \end{bmatrix} \times 48$	
(3)	14 × 14	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{24}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{-52}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{40}$	
Transition Layer	14×14	1×1 conv			
(3)	7×7	2×2 average pool, stride 2			
Dense Block	7 ~ 7	$\begin{bmatrix} 1 \times 1 \text{ conv} \end{bmatrix}_{\times 16}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \end{bmatrix}_{\times 22}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \end{bmatrix}_{\times 22}$	
(4)	/ × /	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 10} \begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 10}$		$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 32}$	
Classification	1×1	7×7 global average pool			
Layer		1000D fully-connected, softmax			

Downsampling Block

Network	mloU (%)	# Param.	# Multi-Adds	
EDANet	65.10	0.68M	8.97B	
EDA-DenseDown	61.63	0.42M	8.51B	

Comparison on Cityscapes

Method	Pretrained	mloU (%)	Speed (FPS)		# Param
wiethod	rietianieu		Titan X	Other GPUs	<i>ii</i> i arann.
SegNet [1]	ImageNet	56.1	16.7	-	29.5M
ENet [40]	No	58.3	76.9	-	0.36M
SQ [56]	ImageNet	59.8	16.7	-	-
ESPNet [37]	No	60.3	-	112.9***	0.36M
SkipNet-MobileNet [51]	ImageNet	61.5	45.0	-	-
ContextNet [42]	No	66.1	18.3	-	0.85M
ERFNet [45]	No	68.0	41.7	-	2.1M
BiSeNet [58]	ImageNet	68.4	-	105.8**	5.8M
ICNet [61]	ImageNet	69.5	30.3	-	-
EDANet (ours)	No	67.3	81.3	108.7 ⁺	0.68M

Comparison on CamVid

Method	mloU (%)	Class acc. (%)	Global acc. (%)	# Param.
ENet [40]	51.3	68.3	-	0.36M
ESPNet [37]	55.6	68.3	-	0.36M
SegNet [1]	55.6	65.2	88.5	29.5M
FCN-8s [36]	57.0	-	88.0	134.5M
FC-DenseNet56 [27]	58.9	-	88.9	1.5M
DeepLab-LFOV [6]	61.6	-	-	37.3M
Dilation8 [59]	65.3	-	79.0	140.8M
BiSeNet [58]	65.6	-	-	5.8M
ICNet [61]	67.1	-	-	-
EDANet (ours)	66.4	76.7	90.8	0.68M

Video Demo

Input

Ground truth

24

Conclusion

- We develop a novel network named EDANet, which incorporates asymmetric convolution with dilated convolution and dense connectivity. It can run on high-resolution images at 108 FPS on a single GPU and achieve 67.3% mIoU on the Cityscapes dataset.
- EDANet is nearly 3 times faster than ICNet and attains comparable performance; it achieves this without any extra decoder structure, context module, post-processing scheme, and pretrained model.
- We design various types of EDANet variants to analyze the performance of different network architectures and analyze the reasons behind the results.

Thanks for your attention