

Error Diffusion Halftoning Against Adversarial Examples

ICIP 2021

Shao-Yuan Lo and Vishal M. Patel Johns Hopkins University

Recall: Adversarial Examples

$$x_{adv} = x + \delta$$

$$f(\boldsymbol{x}_{adv}) \neq y$$

Recall: Adversarial Examples

• Deep networks are **vulnerable** to adversarial examples.

Recall: Adversarial Examples

- White-box attack
- Black-box attack
- Gray-box attack

Defense Methods

• Adversarial training: Enhance the robustness of networks itself.

$$\theta^* = \arg\min_{\theta} \mathbb{E}_{(x,y)\sim\mathbb{D}} \left[\max_{\delta\in\mathbb{S}} L(x+\delta,y;\theta) \right]$$

• Image transformation: Remove perturbations from input images.

 $C(x_{adv}) \neq y.$ $C(T(x_{adv})) = y.$

Madry et al. Towards deep learning models resistant to adversarial attacks. ICLR'18.

Image Transformation-based Defenses

- JPEG compression
- Bit-depth reduction
- Image denoising
 - Gaussian blur
 - Mean/median filter
 - Non-local means
- ...etc

Image Transformation-based Defenses

• Most existing image transformation-based defenses are **NOT** robust against **white-box attacks**.

Defense	Dataset	Distance	Accuracy	
Buckman et al. (2018)	CIFAR	$0.031 (\ell_{\infty})$	0%*	
Ma et al. (2018)	CIFAR	AR $0.031 \left(\ell_{\infty} \right)$		
Guo et al. (2018)	ImageNet	$0.005(\ell_2)$	0%*	
Dhillon et al. (2018)	CIFAR	$AR = 0.031 (\ell_{\infty})$		
Xie et al. (2018)	ImageNet	$0.031 (\ell_{\infty})$	0%*	
Song et al. (2018)	CIFAR	$0.031 (\ell_{\infty})$	9%*	
Samangouei et al. (2018)	MNIST	$0.005 (\ell_2)$	55%**	

Proposed Method: Error Diffusion Halftoning

• Quantize each pixel in the raster order one-by-one, and spread the quantization error to the neighboring pixels.

$$\hat{I}(i,j) = I(i,j) + \sum_{m,n \in S} h(m,n)e(i-m,j-n)$$

$$Q(i,j) = u(\hat{I}(i,j) - \theta) \quad e(i,j) = \hat{I}(i,j) - Q(i,j)$$

u: unit step function

h: error filter

Proposed Method: Error Diffusion Halftoning

- The quantization operation invalid the adversarial variations.
- Updating the values of the neighboring pixels repeatedly makes the adaptive attacks hard to identify the mapping between the original image and the corresponding halftone.
- Spreading quantization errors produces better halftoning quality and tends to enhance edges and object boundary in an image.
- Take **both** adversarial robustness and clean data performance.
- Complementary to adversarial training.

Experimental Results

- Dataset: CIFAR-10
- Attacks (white-box): PGD [Madry et al.] and Mult [Lo and Patel]

Method	Training	Clean	PGD- ℓ_{∞}	PGD- ℓ_2	Mult- ℓ_∞	Mult- ℓ_2	Avg _{adv}	Avg _{all}
Vanilla Gaussian blur Non-local means JPEG compression Bit-depth reduction Halftoning (ours)	Standard training	94.03 <u>90.17</u> 88.66 90.06 78.87 88.57	0.01 0.20 0.02 2.97 15.26 <u>9.53</u>	0.20 1.34 0.49 4.82 <u>10.84</u> 11.98	0.05 0.17 0.03 1.81 10.79 <u>5.54</u>	0.01 0.05 0.00 0.22 4.52 <u>1.07</u>	0.07 0.44 0.14 2.46 10.35 <u>7.03</u>	18.86 18.39 17.84 19.98 24.06 23.34
Vanilla Gaussian blur Non-local means JPEG compression Bit-depth reduction Halftoning (ours)	Adversarial training	83.31 75.96 75.47 24.97 71.66 84.37	<u>51.15</u> 44.59 44.67 38.99 47.34 60.01	50.68 47.12 45.29 43.72 42.40 56.56	54.10 45.07 16.59 <u>59.15</u> 48.50 67.37	40.29 32.48 14.53 <u>44.72</u> 41.63 88.44	49.06 42.32 30.27 46.65 44.97 68.10	<u>55.91</u> 49.04 39.31 42.31 50.31 71.35

Feature Visualization

Feature Analysis

• Mean square differences between the features of clean images and the features of adversarial examples.

Conclusion

- Propose a new image transformation-based defense method using error diffusion halftoning.
- Remove adversarial perturbations and weaken adaptive attacks.
- Robust against white-box attacks.
- Produce high quality halftones and thus guarantee good clean data performance.