# Efficient Road Lane Marking Detection with Deep Learning

Ping-Rong Chen\*, Shao-Yuan Lo\*, Hsueh-Ming Hang, Sheng-Wei Chan, Jing-Jhih Lin

National Chiao Tung University

DSP 2018 Oral November 21, 2018





#### Input: RGB image

**Output: Lane Marking** 

- Step 1: Segmentation
- Step 2: Grouping
- Step 3: Fitting



- Step 1: Segmentation
- Step 2: Grouping
- Step 3: Fitting





- Step 1: Segmentation (by deep learning)
- Step 2: Grouping (by post-processing scheme)
- Step 3: Fitting (by post-processing scheme)



# **Deep Learning Method**



# SegNet

- Encoder: Based on a VGG16.
- **Decoder:** Symmetric to the encoder.



[Simonyan and Zisserman], [Badrinarayanan et al.]

#### LMD

• LMD: Lane Marking Detector, the proposed convolutional network for semantic segmentation.



#### LMD

- **Dilated convolution:** Insert zeros between two consecutive kernel values along each dimension.
- The effective size of a *nxn* convolution with dilation rate *r*:

 $[r(n-1)+1] \times [r(n-1)+1]$ 



# LMD

- Remove the last two downsampling layers to get larger feature maps.
- Apply the dilated convolution to keep the receptive fields without the increases of the number of parameters and computational cost.





# **Class Balancing**

• Median frequency balancing :

 $w_c = \frac{median\,freq}{freq(c)}$ 

• Goal : min  $\sum w_c \times (loss function)_c$ 

#### CamVid Dataset

- Classes: 12
- Training data: 367
- Test data: 233
- Resolution: 360 x 480





#### [Brostow et al.]





# **Class Balancing Experiment**

Input

Ground truth



Balanced x 0.6









#### Balanced x 5



# **Class Balancing Experiment**

| The class weight of lane | Class accuracy | loU  |  |  |
|--------------------------|----------------|------|--|--|
| Balanced x 0.6           | 80.7           | 53.6 |  |  |
| Balanced                 | 83.9           | 52.6 |  |  |
| Balanced x 2             | 82.9           | 51.3 |  |  |
| Balanced x 5             | 88.7           | 47.3 |  |  |

IoU: intersection over union

# Comparison

- Resolution: 360 x 480
- GPU: GTX 1080
- Framework: Caffe

| Network                           | Frame rate (fps) | Model size (MB) |  |  |
|-----------------------------------|------------------|-----------------|--|--|
| SegNet<br>[Badrinarayanan et al.] | 28.1             | 117             |  |  |
| LMD<br>(ours)                     | 34.4             | 66              |  |  |

+22.4% save 43.6%

#### Comparison

| Network    | Buil. | Tree | Sky  | Car  | Sign | Road | Pede. | Fenc. | Pole | Side. | Bike | Lane | Class avg. | mloU |
|------------|-------|------|------|------|------|------|-------|-------|------|-------|------|------|------------|------|
| SegNet [1] | 88.8  | 87.3 | 92.4 | 82.1 | 50.5 | 97.2 | 57.1  | 49.3  | 27.5 | 84.4  | 30.7 | -    | 65.2       | 55.6 |
| ENet [2]   | 74.7  | 77.8 | 95.1 | 82.4 | 51.0 | 95.1 | 67.2  | 51.7  | 35.4 | 86.7  | 34.1 | -    | 68.3       | 51.3 |
| LMD        | 89.2  | 86.4 | 93.7 | 83.8 | 58.1 | 95.4 | 79.3  | 52.7  | 48.6 | 90.5  | 61.6 | -    | 76.3       | 63.5 |
| LMD-12     | 88.1  | 86.8 | 94.0 | 84.3 | 55.4 | 90.1 | 80.1  | 51.9  | 48.4 | 92.3  | 64.7 | 83.9 | 76.7       | 62.2 |
| LMD-12*    | 89.3  | 87.9 | 94.1 | 87.0 | 63.7 | 91.2 | 86.0  | 55.2  | 54.8 | 93.9  | 67.0 | 85.4 | 79.6       | 65.2 |

\* with ImageNet pretrained model

[1] Badrinarayanan et al. [2] Paszke et al.

#### Results

Input

Ground truth

LMD output



# Lane Segmentation

- Network: LMD
- Classes: 2 (lane and non-lane)



#### Input: RGB image

**Output: Segmentation** 

# **Post-Processing Scheme**

- Step 1: Segmentation (by deep learning)
- Step 2: Grouping (by post-processing scheme)
- Step 3: Fitting (by post-processing scheme)



# Grouping

• Connected Component Labeling (CCL)



|  | 0 | 1 | 0 | 0 | ( |
|--|---|---|---|---|---|
|  | 3 | 1 | 0 | 0 | ( |
|  | 0 | 1 | 0 | 4 | 4 |
|  | 0 | 1 | 0 | 0 | ( |
|  | 0 | 0 | 0 | 0 | ( |
|  | 5 | 5 | 5 | 5 | ( |

Equal Label :

- {1,3}
- {2,4}
- {5}

|   | 0 | 1 | 0 | 0 | 0 | 2 |
|---|---|---|---|---|---|---|
|   | 1 | 1 | 0 | 0 | 0 | 2 |
|   | 0 | 1 | 0 | 2 | 2 | 2 |
| r | 0 | 1 | 0 | 0 | 0 | 2 |
|   | 0 | 0 | 0 | 0 | 0 | 0 |
|   | 5 | 5 | 5 | 5 | 0 | 0 |

Re-label: {1,3}→{1} {2,4}→{2} {5}→{5}



# Grouping

Measurement function design





# Fitting

• Fitting points selection



# Fitting

• A 3<sup>rd</sup> order polynomial for curve fitting:  $y = ax^3 + bx^2 + cx + d$ 



#### Results



#### Results

• Video demo



Lane detection

# Conclusion

- We proposed a new network for semantic segmentation, LMD, which is faster, smaller, and more accurate than SegNet, and can achieve real-time for self-driving applications.
- We designed a post-processing scheme for the final lane detection.