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What’s Adversarial Example?

xadv=x+ o)

f(xadv) Y



What’s Adversarial Example?

* Adversarial examples are visually similar to human but can fool well-
trained deep networks.

* Deep networks are vulnerable to adversarial examples.

+.007 x ; =
T sign(VzJ (6, z,y)) esign(VzJ (0, z.,y))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

[Goodfellow et al. ICLR’15]



Generate Adversarial Examples

* Train a model
* min Loss(f(x), y; 0)
* Minimize the loss function w.r.t. model parameters 6

* Generate adversarial examples
* Most common method: Gradient-based method, e.g., FGSM.
* max Loss(f(x+0), y; 0)
* Maximize the loss function w.r.t. adversarial perturbation 6



Generate Adversarial Examples

* Generate adversarial examples
* Most common method: Gradient-based method, e.g., FGSM.
* max Loss(f(x+6), y; 0)
* Maximize the loss function w.r.t. adversarial perturbation 6

* Perturbation budget ||5]|
* Constrain the magnitude of perturbation, e.g., Lp-norm.
* Constrain the region of perturbation, e.g., patch attack.



Adversary’s Knowledge

 White-box attack
* Black-box attack
* Gray-box attack

© >
Low Adversary’s Knowledge High

https://slidetodoc.com/unclassified-if-
you-know-the-enemy-and-know



Untargeted/Targeted Attacks

e Untargeted attack
f(xadv) + y

Ladv(x) — _L(x» Y)
* Targeted attack
f(Xaav) = Yaav, Yadav FY

Laay(x) = L(X, Yaqv)



Adversarial Examples in Different Types

Original Adversarial Prediction Original Adversarial Prediction

Aaron Tveit Stop sign Stop sign Added lane
Abbie Cornish Abbie Cornish Abigail Breslin Stop sign Stop sign Speed limit 35

[Wu et al. ICLR’20]



Adversarial Examples in Physical World

[Hu et al. ICCV’21] [Ranjan et al. ICCV’19]



Adversarial Examples in Different Tasks

Semantic segmentation Object detection Optical flow
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P
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[Ranjan et al. ICCV’19]

[Xie et al. ICCV’17]
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Adversarial Defenses

* Image transformation: Remove perturbations from input images.

f(xadv) + Yy
f(T(xadv)) =Yy

e Adversarial training: Enhance the robustness of networks itself.

9% — arggﬂ]iﬂ E(z.y)~D Ii[jlélé{L(;E +4,v;0)



Image Transformation-based Defenses

* Image preprocessing methods: * Generative model methods:
* Color precision reduction (pixel value quantization) * Defense-GAN
 JPEG compression (frequency domain quantization) [Samangouei et al. ICLR"18]

. . . . . * PixelDefend
Denoising (Gaussian blur, median, mean, bilateral, [Song et al. ICLR'18]
non-local means, etc.)

Color space (RGB, HSV, YUV, LAB, etc.)

Contrast (histogram equalization)

Noise injection (add noise on adversarial examples)
FFT perturbation (similar to JPEG)

e Swirl (rotation) [Das et al. KDD'18]
* Resizing [Xu et al. NDSS’18]

[Guo et al. ICLR’18]
* Gray scale

[Raff et al. CVPR’19]



Image Transformation-based Defenses

 [Athalye et al. ICML 19] proposed adaptive attacks, which defeat
most image transformation-based defenses.

e Strong white-box attacks are generated through gradients, e.g.,
FGSM and PGD attacks.

* Image transformation-based defenses mostly rely on gradient
masking, which can be defeated by adaptive attacks.

o Defense Dataset Distance Accuracy

* Three types of masked gradients: Buckman ool G0T8) CIFAR 0031 (6) 070,
Ma et al. (2018) CIFAR 0.031 (£0) 5%
. al. ag 0.005 (£,) 0%

e Shattered gradlents < BPDA gﬁﬁlztndel:tfl?(]zgfilx) E?SA%NCt 0.031 E!i,) 0%
Xie et al. (2018) ImageNet 0.031 (£) 0%«
. H al. 0.031 (£ 9%

* Stochastic gradients €< EOT Sumngouci et al MNIST  0.005(6) 5%

. . . . (2018)

* Exploding & vanishing gradients < BPDA or EOT or Both e oo cmar  oostie)
Na et al. (2018) CIFAR 0.015 (Y) 15%
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Adversarial Training

* Adversarial training is a strong defense against white-box attacks.
* Core idea: Train with adversarial examples.

e Adversarial training does not cause masked gradients.

* It has been widely used as a standard baseline defense.

dES

— _/
Y

0* = arg minE, ,y.p |max L(z + 6, y; 6)
0

Generate adversarial examples

— _/
v

Train model parameters [Madry et al. ICLR’18] 17



Why Study Adversarial Examples?

* Deep learning models are
being widely used in real-
world applications, such as
autonomous driving. Their
safety is critical.

e We aim to build robust DL
models that we can trust.
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https://nicholas.carlini.com/writing/201
9/all-adversarial-example-papers.html
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Why Videos?

* Most research in adversarial examples focuses on static images.
* Adversarial attacks and defenses for videos are less explored.

* To the best of our knowledge, this work is the first defense against
white-box attacks in the video domain.

* We provide comprehensive baseline results for adversarial
robustness in the video domain.
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Adversarial Videos

* Video is a stack of consecutive images.

* A naive way to generate adversarial videos:
Use image-based method directly.

x%% = x + € - sign(V,.L(x,y; 0))

Image: x € RC*HXW

Video: x € RFXCXHXW



Adversarial Framing (AF)
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correct: Boston bull correct: ocarina correct: gas pump correct: Egyptian cat

unattacked: Boston bull unattacked: loupe unattacked: tusker unattacked: gas pump unattacked: tabby
attacked: maypole attacked: maypole attacked: maypole attacked: maypole attacked: maypole

Task: Action recognition Attack | W =1 W =2 W=3 W=4
Dataset: UCF-101 wNone 85.95%

RF 82.57% 80.53% 81.11% T79.74%
BF 84.94% 84.73% 84.75% 84.59%

AF 65.77% 22.12% 9.45% 2.05%

[Zajac et al. AAAI'19]
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Salt-and-Pepper Attack (SPA)

 Add unbounded perturbations on a
number of randomly selected pixels.

* The perturbation looks like salt-and-
pepper noise.

e A kind of LO-norm attack.

* Decrease action recognition
accuracy from 89.0% to 8.4% on
UCF-101.
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Adversarial Video Types

* PGD:

Projective gradient descent
[Madry et al. ICLR’18]

* ROA:

Rectangular occlusion
[Wu et al. ICLR’20]

 AF:

Adversarial Framing
[Zajac et al. AAAI'19]

* SPA:
Salt-and-Pepper noise
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Adversarial Video Types

* PGD:

Projective gradient descent
[Madry et al. ICLR’18]

* ROA:

Rectangular occlusion
[Wu et al. ICLR’20]

 AF:

Adversarial Framing
[Zajac et al. AAAI'19]

PGD

* SPA:

Salt-and-Pepper noise How to simultaneously defend against

multiple types of attacks?
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Problem: Multi-perturbation Robustness

e Standard adversarial training has poor multi-perturbation robustness.
* Training: &reo
* Test: Clean, 6PGD, 6ROA, 6AF, Osea

0" = arggmin E(z,y)~D I}S’lélé{L(I +0,y;0)

- _/
V

Generate one type of
adversarial examples

— _/
V

Train model parameters

[Madry et al. ICLR’18]
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Problem: Multi-perturbation Robustness

e Dataset: UCF-101 (action recognition)

e Model: 3D ResNeXt-101

e Attack setting:

PGD Linf: e=4/255, T=5
ROA: patch size=30x30

AF: width=10
SPA: #pixels=100, T=5

Model Clean PGD ROA AF SPA Mean Union
No Defense 89.0 33 0.5 1.6 84 20.6 0.0
AT-PGD 78.6 49.0 5.0 0.6 67.1 40.1 0.3
AT-ROA 82.6 12.5 69.0 54.0 17.6 47.1 79
AT-AF 84.6 7.1 39 80.5 12.2 37.7 2.1
AT-SPA 835 36.9 2.6 0.7 69.5 38.6 0.2
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Problem: Multi-perturbation Robustness

* Average adversarial training is better, but not enough.
¢ Training: Clean, 6PGD, 6ROA, 6AF, Osea
* Test: CIean, 5PGD, 5ROA, 6AF, Osea

N

0* —argmmIEl{my} D Z;HSKL (x+ 0;,1y;0)
i=1 >
g _

~
Generate multiple types of
adversarial examples

— _/
v

Train model parameters [Tramer & Boneh NeurlPS'19]




Problem: Multi-perturbation Robustness

Model Clean PGD ROA AF SPA Mean Union
No Defense 89.0 33 0.5 1.6 84 20.6 0.0
AT-PGD 78.6 49.0 5.0 0.6 67.1 40.1 0.3
AT-ROA 82.6 12.5 69.0 54.0 17.6 47.1 7.9
AT-AF 84.6 7.1 39 80.5 12.2 37.7 2.1
AT-SPA 83.5 36.9 2.6 0.7 69.5 38.6 0.2
AVG [30] (NeurIPS'19) 74.5 43.1 55.6 3.5 57.2 46.8 35
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Observation: Distinct Data Distributions

 Why average adversarial training is not an ideal strategy?

* Example: Clean vs. PGD.
 Clean and PGD have distinct data distributions.

* The statistics estimation at BN may be confused when facing a
mixture distribution.

RelLU
clean

T adwv

| clean + adv

BN

Probability

conv

X [Xie et al. CVPR’20]

xau:h.- Kclean
r



Observation: Distinct Data Distributions

* Example: Clean vs. PGD.
* An auxiliary BN guarantees that data from different distributions

are normalized separately.

RelU
1 clean
adv

] clean

BN >

=

‘l 3

o

=]

2

o

BN Auxiliary BN >
T lean _/xadv E
conv g Heleary el
I i .
[Xie et al. CVPR’20]

(b) Proposed Auxiliary BN Design



Extension for Multi-perturbation Robustness

* What about multiple attack types?
* Example: Clean, PGD, ROA, AF, SPA

* Our assumption: Different attack types have distinct data
distributions.
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Extension for Multi-perturbation Robustness

* What about unforeseen attack types? .;'; — i

o N y N
bz I
+ Example o e S
T
) 5
c' I

 Known: Clean, PGD, ROA
* Unforeseen: AF, SPA

* Lp-norm attacks: PGD, SPA
* Physically realizable attacks: ROA, AF

* Our assumption: Similar attack types
have similar data distributions.
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Our Solution: Multi-BN Structure

 Example: 4 3N-Clean )
* Known: Clean, PGD, ROA lr‘;':;‘gs —1+ Conv _/_._ BN-Lp _._\_ RelU ——»
* Unforeseen: AF, SPA T
\ -Physica )
* Lp-norm attacks: PGD, SPA - ~

* Physically realizable attacks: ROA, AF tpadv

images

—> Conv —=—  BN-Lp —*=— RelU —

— BN-Clean -»

Physical
adv —
images

*— BN-Physical —*
-

>

J
N

— BN-Clean -»

— Conv Y BN-Lp :'/- RelU —
BN-Physical
. ! J

34




Our Solution: Multi-BN Structure

BN-Clea

.. i,i'i;i’s—* Con /~ BN-Lp ~\ Rely ——

* Training: Clean, 6rep, Oroa o

4 e BN-Clean - )
e Test: Clea n, 6PGD, 6ROA, 6AF, Osea e T Conv = BNAp = Rell

S * BN-Physical —* )

ﬁh.r b hysical 4 o BN-Clean - )
9 p— HE J- 9 P;I;Ivca — Conv — BN-Lp - RelU —T1—

_I_ ZI:(] T images . \—BN-PhysicaI-/- )

N
0" =argmin  E |L(z,y;0°,600) + Y max L(z + 6;,y;6° 07
9 (z,y)~D i1 0; €54
- _J _J
~ N
Clean data Generate multiple types of
adversarial examples
- J

V

Train model parameters
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Our Solution: Multi-BN Structure

Model Clean PGD ROA AF SPA Mean Union
No Defense 89.0 33 0.5 1.6 8.4 20.6 0.0
AT-PGD 78.6 49.0 5.0 0.6 67.1 40.1 0.3
AT-ROA 82.6 12.5 69.0 54.0 17.6 47.1 79
AT-AF 84.6 7.1 39 80.5 12.2 37.7 2.1
AT-SPA 835 36.9 2.6 0.7 69.5 38.6 0.2
MultiBN-manual 33.7 46 4 65.6 57.0 60.4 62.6 40.7
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Our Solution: Multi-BN Structure

e Performance (%) of each BN branch on the five input types.

BN Branch Clean PGD ROA AF SPA
BN-Clean 83.7 21.3 13.5 5.9 23.8
BN-Lp 79.0 46.4 1.7 1.9 60.4
BN-Physical 83.0 23.5 65.6 57.0 26.6

* Our assumptions are valid:
» Different attack types have distinct data distributions.
» Similar attack types have similar data distributions.



BN Selection Module

* At inference time, the input data have to pass through the
corresponding BN branch automatically.

* The adversarial video detector is achieved by a video classifier.

 Gumbel-Softmax function pangetal. ictr'17]is a differentiable
approximation of the argmax operation (vanilla Softmax also works).

4 BN Selection Module h()

Gumbel samples

/\ Gumbel — @ p-Clean
Adversarial Softmax
-L ]
2 ‘ Video Detector | é > @ p-Lp
\ 0 p—PhysicaI/




BN Selection Module

* Use Gumbel-Softmax scores as ratio factors to weight each BN
branch’s output features.

K
7 = E D1 Zx / Gumbel samples BN Selection Module h()\
k=1

/\

Gumbel @® p-Clean
Adversarial 5 Softmax ® o-lp
K:# BN branches Video Detector
\ @ p-Physic

P1, -+, Pr:Tatio factors

)

Zq, ..., Zg:each BN branch's output features

Z:weighted features



Entire Framework

* End-to-end pipeline: y

— fa+ 6 6,6, 0%
.';'(37 + 03, h.(;r + d;: Htfﬁt): o¢ Hh)

X + Oi %

BN Selection Module h()\

-

2 YK 2

y4
Convolution

BN-Physical —@® z-Physical —

BN-Lp @ z-Lp —-_T> z-Lp x p-Lp

—>» z-Physical x p-Physical —

Gumbel samples
Gumbel @® p-Clean |
Adversarial Softmax ) p = h(x + 6i)
Video Detector g ® p-Lp
@ p-Physical

Z=3 pkzk

W
BN-Clean —@® z-Clean ——>  z-Cleanx p-Clean — )
Z

A Layer in Video Recognition Model with Multiple BN Structure g()

RelLU =

—

The Entire MultiBN Framework f( )

¥ =f(x + &i)
= g(x + &i, p)
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Entire Framework

* End-to-end training: ¢" =argmin E [L(z,y; 0) + A+ L(w, y™"; 6°)

X + Oi ﬁ

max L(z + 9;,y; 0) + A - L
+ Z max L(z + 8i,y; 0) + A+ L(x

0 (z,y)~D

=1

Gumbel samples

Adversarial ]
Video DetectorJ

BN Selection Module h()\

AN
3

® p-Lp
@ p-Physical

Gumbel . -Clean
Softmax { P p = h(x + &i)

N>

e (5 jdct (}d(l))]

=3 pk Zk

v N\ ¥

Convolution

.

BN-Clean —@ z-Clean ——>  z-Cleanxp-Clean —
BN-Lp @ z-Lp —_t> z-Lp x p-Lp —

BN-Physical —@ z-Physical ——> z-Physical x p-Physical —

A 72

A Layer in Video Recognition Model with Multiple BN Structure g( )

N>

RelLU ==

The Entire MultiBN Framework f( )

y =f(x + 6i)

=g(x + &i, p)
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Experimental Setup

e Dataset: UCF-101 (action recognition)
* Model: 3D ResNeXt-101

e Attack setting:
PGD Linf: €=4/255, T=5
ROA: patch size=30x30
AF: width=10
SPA: #pixels=100, T=5

* White-box attacks
* Untargeted attacks



Results

Dataset: UCF-101

Model ‘ Clean | PGD ROA AF SPA | Mean Union
No Defense 890 | 33 0.5 1.6 84 | 206 0.0
TRADE [19] (ICML’19) 32.3 29.0 5.7 3.3 42.2 32.5 1.9
AVG [26] (NeurIPS°19) 68.9 38.1 51.4 18.5 49.6 45.3 17.3
MAX [26] (NeurIPS'19) 72.8 32.5 31.0 5.8 49.4 38.3 5.5
MSD [27] (ICML"20) 70.2 43.2 1.7 1.6 56.0 34.6 0.7
MultiBN (ours) 742 | 446 8.6 443 537 | 551 34.8
Dataset: HMDB-51
Model ‘ Clean | PGD ROA AF SPA ‘ Mean Union
No Defense 651 | 00 0.0 0.0 03 | 131 0.0
TRADE [19] (ICML’19) 54.8 6.8 0.3 0.0 20.5 16.5 0.0
AVG [26] (NeurIPS’19) 39.0 14.3 17.1 2.8 26.2 19.9 1.4
MAX [26] (NeurIPS'19) 48.6 13.9 16.0 0.1 30.3 21.8 0.0
MSD [27] (ICML"20) 41.4 18.2 0.1 0.0 31.2 18.2 0.0
MultiBN (ours) sl | 220 27 18 299 | 269 5.0
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Results: Robustness Against Adaptive Attacks

e Construct an adaptive attack, which jointly attacks the target
model part and the BN selection module part.

* The intuition is to generate adversarial examples which can also
fool the BN selection module to let it select the incorrect BN
branch, and thus become easier to fool the target model.

) = arg max [L(.r' +8,y:0) + X\ - L(z + 6, y*t: g% ’]}

Gumbel | BN Selection Module hi
umbel samples
= Y . : = i
. Adversarial Softmax
g -L|
{3 I": b Video Detector DD
® p-Physi
- 2=73 pkzk
X+ 6i
( BN-Clean z-Clean ==  z-Cleanx p-Clean = .
z i
, | = f{x + 6i)
> Convolution < BN-Lp Lp > zLlpxp-Lp %7 RelU = glx+ 61,0)
BN-Physical z-Physical =+ z-Physical x p-Physical —
AlLayer in Vi odel with M u
Frai

Z |8 &
718 & & &
3 |=




Results: Robustness Against Adaptive Attacks

* The canonical attack has the greatest attacking strength.
* The proposed MultiBN is robust against adaptive attacks.

PGD ROA AF SPA
60.0

58.0
56.0

< 54.0

—

")
& 52.0

O

< 50.0
48.0
46.0
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Results: Different Attack Budget

PGD ROA AF SPA
=g==Ng Defense =—@=AVG =—o=—MultiBN =f==MNo Defense =—=AVG =t MuliBM == No Defense =—=AVG =t MultiBN =8=No Defense —@=AVG =—t=—MultiBN
90.0 90.0 90.0 90.0
B0.0 80.0 80.0 80.0
70.0 700 70.0 T0.0
= 60.0 — 60.0 — 60.0 — 60.0
£ £ £ £
E 50.0 g— 50.0 §- 50.0 g 50.0
S 40.0 S 40.0 S 400 5 40.0
3 [ i+ [
< 300 < 300 < 300 < 300
20.0 20,0 20.0 20.0
10.0 10.0 10.0 10.0
0.0 0.0 0.0 0.0
5 10 20 o 1 5 10 20 0 1 5 7 10 0 1 5 7 10
trmax tmax tmax tmax
Fig. 3: Results (%) under the four attack types with varied numbers of attack iterations #,,,,..
PGD ROA AF SPA
== No Defense —S=AVG == MultiBN =N Defense == AVG =t MukiBN == MNo Defense —S=AVG =t MultiBN == No Defense —S=AVG =t MuliBN
90.0 90.0 90.0 90.0
80.0 80.0 80.0 80.0
70.0 70.0 70.0 70.0
— 60.0 — B60.0 — 60.0 — 60.0
£ S S £
= 50.0 = 50.0 = 50.0 = 50.0
o 1* ) o o
e e s s
= 40.0 S 400 S 40.0 S5 40.0
o I+ 1 o
< 300 < 300 < 300 < 300
200 200 200 200
10.0 10.0 10.0 10.0
0.0 0.0 * +* * 0.0 - > * 0.0
8 12 16 1] 30 45 50 (1] 0 5 15 20 25 o 100 200 300 400
€ S ROA S AF SsPA

Fig. 4: Results (%) under the four attack types with varied perturbation bounds.

42



Results: Robustness Against Black-box Attacks

* Generate adversarial videos on a surrogate model:
3D Wide ResNet-50

* Test on the target model: 3D ResNeXt-101

Model Clean PGD ROA AF SPA Union
TRADE [23] (ICML'19) 82.3 81.0 60.8 65.0 78.0 493
AVG [30] (NeurIPS'19) 68.9 68.4 68.0 62.0 68.4 56.2
MAX [30] (NeurIPS'19) 72.8 72.4 71.4 63.5 71.9 57.9
MSD [31] (ICML"20) 70.2 69.8 40.1 52.2 69.1 31.3
MultiBN (ours) 74.2 13. 74.0 724 T1.5 63.5




Results on Images

 Dataset: CIFAR-10
e Model: ResNet-18

Model Clean PGD ROA AF SPA Mean Union
No Defense 94.3 0.0 4.7 0.1 16.3 23.1 0.0
TRADE [23] (ICML"19) 714 14.7 34.7 30.4 52.8 40.8 10.1
AVG [30] (NeurlPS'19) 86.4 47.2 53.6 60.5 67.8 63.1 28.1
MAX [30] (NeurlPS'19) 87.7 46.3 60.0 54.6 73.6 64.4 33.7
MSD [31] (ICML20) 93.0 52.7 6.7 7.1 59.6 43.8 2.2
MultiBN (ours) 04.2 497 74.9 66.7 60.9 69.3 36.9
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Thanks for your attention



