Multi-Class Lane Semantic Segmentation using Efficient Convolutional Networks

Shao-Yuan Lo, Hsueh-Ming Hang, Sheng-Wei Chan, Jing-Jhih Lin

National Chiao Tung University

MMSP 2019 Oral September 27, 2019

Outline

- Introduction
- Backbone Network: EDANet
- Methods
 - Feature Size Selection (FSS)
 - Degressive Dilation Block (DD Block)
- Experiments
 - Dataset / Implementation Details
 - Feature Size Selection (FSS)
 - Degressive Dilation Block (DD Block)
- Conclusion

Introduction

Introduction

RGB image

Semantic segmentation

Self-driving applications

Efficiency

Accuracy

as high as possible

Inference Time

real-time

Model Size

low memory consumption

Introduction

Backbone Network

Backbone Network: EDANet

*S.-Y. Lo, H.-M. Hang, S.-W. Chan, and J.-J. Lin, "Efficient dense modules of asymmetric convolution for real-time semantic segmentation," arXiv preprint arXiv: 1809.06323, 2018.

Backbone Network: EDANet

Methods

Methods

- Lane is a small object.
- Network modifications for small objects.
- Feature Size Selection (FSS)
- Degressive Dilation Block (DD Block)

Feature Size Selection

- Add an additional EDA Block 0 to extract features on larger feature maps, and thus small objects or detailed boundaries can be detected.
- To maintain similar computational complexity for high inference speed and fair comparison, we reduce the number of EDA modules in EDA Block 1 and EDA Block 2

Degressive Dilation Block

- Dilated convolution is not good at gathering essential local features because of the sparsity of convolutional kernels, which causes inaccurate recognition of small and thin objects.
- Inspired by LFE module [Hamaguchi et al.], we propose DD Block, which consists of 4 EDA modules with the **degressive dilation rates**.

Network	EDA Block 2						DD Block					
EDANet	2	2	4	4	8	8	16	16	-	-	-	-
EDA-DDB	2	4	8	16	-	-	-	-	8	4	2	1

Experiments

ITRI Dataset

- Class: 6
- Double solid yellow, single dashed yellow, single solid red, single solid white
- Training data: 2192
- Test data: 567

• Resolution: 480 x 720

Implementation Details

- Optimizer: Adam
- Batch size: 16
- Weight decay: 0.0001
- Poly learning rate policy: $lr' = lr \times (1 iter/max_iter)^{power}$
- Initial learning rate: 0.0005
- Power: 0.9
- Data augmentation: random horizontal flip and translation of 0-2 pixels on both axes.

Experiment on FSS

EDANet

Network A

Network B

Experiment on FSS

Network	DS-Y	SD-Y	SS-R	SS-W	Road	mloU	Run time
ERFNet [Romera et al.]	78.6	82.4	39.1	46.1	96.9	73.3	24ms
EDANet	85.2	69.4	38.4	61.4	97.0	74.7	9.2ms
Network A	85.1	72.1	37.7	57.1	96.9	74.2	12ms
Network B	81.8	65.9	41.7	57.1	96.2	73.1	18ms
EDA-FSS	84.5	74.4	43.0	54.8	96.9	75.0	8.7ms

Experiment on FSS

Experiment on DD Block

Network	EDA Block 2							DD Block				
EDANet	2	2	4	4	8	8	16	16	-	-	-	-
EDA-w/o-di	1	1	1	1	1	1	1	1	-	-	-	-
EDA-DDB-L	2	2	4	4	8	8	16	16	8	4	2	1
EDA-Large-1	2	2	4	4	8	8	16	16	1	1	1	1
EDA-Large-16	2	2	4	4	8	8	16	16	16	16	16	16
EDA-DDB	2	4	8	16	-	-	-	_	8	4	2	1

Experiment on DD Block

Network	DS-Y	SD-Y	SS-R	SS-W	Road	mloU	Run time
EDANet	85.2	69.4	38.4	61.4	97.0	74.7	9.2ms
EDA-w/o-di	78.8	70.9	40.2	60.9	96.7	74.0	9.2ms
EDA-DDB-L	86.3	71.9	40.9	59.1	97.1	75.3	12ms
EDA-Large-1	82.7	68.7	37.4	58.7	96.6	73.4	12ms
EDA-Large-16	81.1	71.4	44.0	62.5	96.8	75.4	12ms
EDA-DDB	86.6	76.4	43.6	57.6	97.1	75.9	9.2ms

Experiment on DD Block

RGB input

Ground truth

EDA-DBB

Video Demo

Conclusion

Conclusion

- We propose two techniques, FSS and DD Block, for multi-class lane semantic segmentation.
- Using larger feature sizes can acquire more localization information for small object segmentation, but keeping a good balance between the network depth and inference speed is critical.
- Using degressive dilation rates achieves improvement by more fine-grained spatial information.
- Our methods are able to run at real-time on highresolution inputs, so they are feasible for real selfdriving cars.