

Overcomplete Representations Against Adversarial Videos

ICIP 2021

Shao-Yuan Lo, Jeya Maria Jose Valanarasu, Vishal M. Patel Johns Hopkins University

Recall: Adversarial Examples

$$x_{adv} = x + \delta$$

$$f(\boldsymbol{x}_{adv}) \neq y$$

Recall: Adversarial Examples

• Deep networks are **vulnerable** to adversarial examples.

Adversarial Videos

- Video is a stack of consecutive images.
- A naïve way to generate adversarial videos: Use image-based method directly.

$$x^{adv} = x + \epsilon \cdot sign(\nabla_{x}L(x, y; \theta))$$

Image: $x \in R^{C \times H \times W}$
Video: $x \in R^{F \times C \times H \times W}$

Feature Denoising

- Remove adversarial perturbations in the feature domain instead of the image domain.
- Mean filter, median filter, bilateral filter, and non-local means.

Proposed Method: Overcomplete Representations

 A typical autoencoder downsamples features and learns undercomplete representations.

https://ai.plainenglish.io/convolutional-autoencoders-cae-with-tensorflow-97e8d8859cbe.

 OUDefend learns both undercomplete representations and overcomplete representations (upsample features)

Proposed Method: Overcomplete Representations

- Undercomplete representations have large receptive fields to collect global information, but they overlook local details.
- Overcomplete representations have opposite properties.
- OUDefend balances **global** and **local** features by learning those two representations.

Proposed Method: Overcomplete Representations

• Append OUDefend blocks to the target network (after each res block).

Adversarial Video Types

- PGD [Madry et al. ICLR'18]
- MultAV (Multiplicative Adversarial Video) [Lo et al. 2020]
- ROA (Rectangular Occlusion Attack) [Wu et al. ICLR'20]
- AF (Adversarial Framing) [Zajac et al. AAAI'19]
- SPA (Salt-and-Pepper Noise Attack) [Lo et al. 2020]

PGD

Clean

MultAV

ROA

AF

SPA

9

Experimental Results

Dataset: UCF-101

- No Defense: Original network trained on clean data
- Madry [Madry et al. ICLR'18] : Original network trained by adversarial training (AT)
- Xie-A [Xie et al. CVPR'19]: Feature denoising (3D conv) network with AT
- Xie-B [Xie et al. CVPR'19]: Feature denoising (2D conv frame-by-frame) network with AT
- OUDefend: Proposed OUDefend network with AT

Method	#Params	Clean	PGD Linf	PGD L2	MultAV	ROA	AF	SPA	Avg_adv
No Defense	33.0M	76.90	2.56	3.25	7.19	0.16	0.24	4.39	2.97
Madry	33.0M	76.90	33.94	35.05	47.00	41.29	55.99	55.99	48.01
Xie-A	33.7M	70.82	31.48	33.25	42.69	37.59	58.87	49.14	42.17
Xie-B	34.8M	69.47	30.19	32.65	41.87	38.22	58.74	49.14	41.80
OUDefend	33.6M	77.90	34.18	35.32	47.63	42.00	56.25	56.29	49.52

Feature Visualization

Conclusion

- Exploit both undercomplete and overcomplete representations
- Evaluate on 6 different attacks
- Show effectiveness with very small complexity increase

