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Recall: One-class Novelty Detection

• One-class novelty detection model is trained with examples of 
a particular class and is asked to identify whether a query 
example belongs to the same known class.

• Example:
• Known class (normal data): 8

• Novel classes (anomalous data): 0-7 & 9 (the rest of classes)
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Recall: One-class Novelty Detection

• Most recent advances are based on the autoencoder architecture.

• Given an autoencoder that learns the distribution of the known class, 
we expect that the normal data are reconstructed accurately while 
the anomalous data are not.
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Attacking One-class Novelty Detection

• How to generate adversarial examples against a novelty detector?

• If a test example is normal, maximize the reconstruction error.

• If a test example is anomalous, minimize the reconstruction error.

Normal data

Training data Adversarial examples Reconstructions
(expected)

AE

High error

Low error

Anomalous 

Normal 

4



Goal: Adversarially Robust Novelty Detection

• Novelty detectors are vulnerable to adversarial attacks.

• Adversarially robust method specifically designed for  
novelty detectors is needed.

• A new research problem.
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Observation: Generalizability 

• Unique property: Preference for poor generalization of 
reconstruction ability.

• However, autoencoders have good generalizability.
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Observation: Feature Denoising

• Adversarial perturbations can be removed in the feature domain.

[Xie et al. CVPR’19]
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Our Solution

• Observations: Generalizability and Feature Denoising.

• Assumption: One can largely manipulate the latent space of a novelty 
detector to remove adversaries to a great extent, and this would not 
hurt the model capacity but helps if in a proper way.

• Solution: Learning principal latent space.
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PCA Rephrased

• h() computes the mean vector and the first k principal components 
of the given data collection X:

• f() performs the forward PCA:

• g() performs the inverse PCA:
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Cascade PCA Process

• Vector-PCA performs PCA on the vector dimension.

• Spatial-PCA performs PCA on the spatial dimension.
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Cascade PCA Process

• Step 1: Forward Vector-PCA, i.e., fv()

𝒁𝑎𝑑𝑣 ∈ ℝ
𝑠×𝑣 𝒁𝑉 ∈ ℝ𝑠×1

Latent space Vector-PCA space
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Cascade PCA Process

• Step 2: Forward Spatial-PCA, i.e., fs()

𝒁𝑉 ∈ ℝ𝑠×1 𝒁𝑆 ∈ ℝ
𝑘𝑆×1

Spatial-PCA spaceVector-PCA space
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Cascade PCA Process

• Step 3: Inverse Spatial-PCA, i.e., gs()

• Step 4: Inverse Vector-PCA, i.e., gv()

𝒁𝑆 ∈ ℝ
𝑘𝑆×1 𝒁𝑝𝑙𝑠 ∈ ℝ

𝑠×𝑣

Principal latent spaceSpatial-PCA space
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Learning Principal Latent Components

• Principal latent components:

• Training time: Train along with the network 
weights by exponential moving average (EMA).

• Inference time: Perform the cascade PCA process 
with the fixed and well-trained parameters:
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Defense Mechanism

• Vector-PCA replaces the 
perturbed latent vectors 
with the clean principal 
latent vector.

• Spatial-PCA removes the 
remaining perturbations 
on the Vector-PCA map.
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Defense Mechanism

• Combine adversarial training.

• The proposed PrincipaLS process can robustify any AE-based 
novelty detectors.
• AE, VAE, AAE, ALOCC (CVPR’18), GPND (NeurIPS’18), etc.
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Results 

• Evaluation metric: mean of AUROC

• PrincipaLS is effective on 5 datasets against 6 attacks for 7 novelty 
detection methods.
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Analysis

• PrincipaLS reconstructs every input example to the known class (digit 2).
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Analysis

• (a) No Defense under clean data    (b) No Defense under PGD attack
(c) PGD-AT under PGD attack          (d) PrincipaLS under PGD attack

• PrincipaLS enlarges the reconstruction errors of anomalous data to a 
great extent.
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