

Adversarially Robust One-class Novelty Detection

Poojan Oza

Vishal M. Patel

Johns Hopkins University

Recall: One-class Novelty Detection

- One-class novelty detection model is trained with examples of a particular class and is asked to identify whether a query example belongs to the same known class.
- Example:
 - Known class (normal data): 8
 - Novel classes (anomalous data): 0-7 & 9 (the rest of classes)

Recall: One-class Novelty Detection

- Most recent advances are based on the autoencoder architecture.
- Given an autoencoder that learns the distribution of the known class, we expect that the normal data are reconstructed accurately while the anomalous data are not.

Attacking One-class Novelty Detection

- How to generate adversarial examples against a novelty detector?
- If a test example is **normal**, **maximize** the reconstruction error.
- If a test example is **anomalous**, **minimize** the reconstruction error.

Goal: Adversarially Robust Novelty Detection

- Novelty detectors are **vulnerable** to adversarial attacks.
- Adversarially robust method specifically designed for novelty detectors is needed.
- A new research problem.

Observation: Generalizability

- Unique property: Preference for **poor** generalization of reconstruction ability.
- However, autoencoders have good generalizability.

Observation: Feature Denoising

• Adversarial perturbations can be removed in the feature domain.

[Xie et al. CVPR'19]

Our Solution

• **Observations**: Generalizability and Feature Denoising.

• Assumption: One can largely manipulate the latent space of a novelty detector to remove adversaries to a great extent, and this would not hurt the model capacity but helps if in a proper way.

• Solution: Learning principal latent space.

PCA Rephrased

• *h()* computes the **mean vector** and the first *k* **principal components** of the given data collection *X*:

 $h(\mathbf{X},k):\mathbf{X}\to\{\boldsymbol{\mu},\tilde{\mathbf{U}}\}$

• *f()* performs the forward PCA:

$$\begin{split} f(\mathbf{X}; \boldsymbol{\mu}, \tilde{\mathbf{U}}) &= (\mathbf{X} - \boldsymbol{\mu} \mathbf{1}^{\top}) \tilde{\mathbf{U}} \\ \mathbf{X}_{pca} &= f(\mathbf{X}; \boldsymbol{\mu}, \tilde{\mathbf{U}}) \end{split}$$

• *g()* performs the inverse PCA:

$$\begin{split} g(\mathbf{X}_{pca}; \boldsymbol{\mu}, \tilde{\mathbf{U}}) &= \mathbf{X}_{pca} \tilde{\mathbf{U}}^\top + \boldsymbol{\mu} \mathbf{1}^\top \\ \hat{\mathbf{X}} &= g(f(\mathbf{X}; \boldsymbol{\mu}, \tilde{\mathbf{U}}); \boldsymbol{\mu}, \tilde{\mathbf{U}}) \end{split}$$

- Vector-PCA performs PCA on the vector dimension.
- **Spatial-PCA** performs PCA on the **spatial** dimension.

V

h

• Step 1: Forward Vector-PCA, i.e., fv()

$$\mathbf{Z}_{adv} \in \mathbb{R}^{s \times v} \longrightarrow \mathbf{Z}_{v} \in \mathbb{R}^{s \times 2}$$

Latent space

Vector-PCA space

• Step 2: Forward Spatial-PCA, i.e., fs()

$$\mathbf{Z}_V \in \mathbb{R}^{s \times 1} \quad \longrightarrow \quad \mathbf{Z}_S \in \mathbb{R}^{k_S \times 1}$$

Vector-PCA space

Spatial-PCA space

$$\{\boldsymbol{\mu}_S, \tilde{\mathbf{U}}_S\} = h_S(\mathbf{Z}_V^{\top}, k_S)$$
$$\mathbf{Z}_S^{\top} = f_S(\mathbf{Z}_V^{\top}; \boldsymbol{\mu}_S, \tilde{\mathbf{U}}_S)$$

- Step 3: Inverse Spatial-PCA, i.e., gs()
- Step 4: Inverse Vector-PCA, i.e., gv()

$$\boldsymbol{Z}_{S} \in \mathbb{R}^{k_{S} \times 1} \longrightarrow \boldsymbol{Z}_{pls} \in \mathbb{R}^{s \times v}$$

Spatial-PCA space

Principal latent space

$$\hat{\mathbf{Z}}_V^{\top} = g_S(\mathbf{Z}_S^{\top}; \boldsymbol{\mu}_S, \tilde{\mathbf{U}}_S)$$

$$\mathbf{Z}_{plr} = g_V(\hat{\mathbf{Z}}_V; \boldsymbol{\mu}_V, \tilde{\mathbf{U}}_V)$$

Learning Principal Latent Components

• Principal latent components:

 $\{\mu_V, \tilde{\mathbf{U}}_V, \mu_S, \tilde{\mathbf{U}}_S\}$

• Training time: Train along with the network weights by exponential moving average (EMA). $\{\mu_V^t, \tilde{\mathbf{U}}_V^t\} = \{\mu_V^{t-1}, \tilde{\mathbf{U}}_V^{t-1}\} + \eta_V(h_V(\mathbf{Z}^t) - \{\mu_V^{t-1}, \tilde{\mathbf{U}}_V^{t-1}\})$

 $\{\boldsymbol{\mu}_{S}^{t}, \tilde{\mathbf{U}}_{S}^{t}\} = \{\boldsymbol{\mu}_{S}^{t-1}, \tilde{\mathbf{U}}_{S}^{t-1}\} + \eta_{S}(h_{S}(\mathbf{Z}^{t}) - \{\boldsymbol{\mu}_{S}^{t-1}, \tilde{\mathbf{U}}_{S}^{t-1}\})$

• Inference time: Perform the cascade PCA process with the fixed and well-trained parameters:

 $\{\boldsymbol{\mu}_V^*, \tilde{\mathbf{U}}_V^*, \boldsymbol{\mu}_S^*, \tilde{\mathbf{U}}_S^*\}$

Defense Mechanism

- Vector-PCA replaces the perturbed latent vectors with the clean principal latent vector.
- Spatial-PCA removes the remaining perturbations on the Vector-PCA map.

Defense Mechanism

- Combine adversarial training.
- The proposed PrincipaLS process can robustify any AE-based novelty detectors.
 - AE, VAE, AAE, ALOCC (CVPR'18), GPND (NeurIPS'18), etc.

Results

- Evaluation metric: mean of AUROC
- PrincipaLS is effective on **5** datasets against **6** attacks for **7** novelty detection methods.

Dataset	Defense Clean FGSM [11]	PGD [27]	MI-FGSM [36]	MultAdv [37]	AF [38] Black-box [47] Average
	No Defense 0.964 0.350	0.051	0.022	0.170	0.014 0.790 0.337
MNIST [48]	PGD-AT [27] 0.961 0.604 FD [15] 0.963 0.612 SAT [23] 0.947 0.527 RotNet-AT [21] 0.967 0.598 SOAP [22] 0.940 0.686 APAE [46] 0.925 0.428 PrincipaLS (ours) 0.973 0.812	0.357 0.366 0.295 0.333 0.504 0.104 0.706	0.369 0.379 0.306 0.333 0.506 0.105 0.707	0.444 0.453 0.370 0.424 0.433 0.251 0.725	0.155 0.691 0.512 0.142 0.700 0.516 0.142 0.652 0.463 0.101 0.695 0.493 0.088 0.863 0.574 0.022 0.730 0.366 0.636 0.866 0.775
SHTech [52]	No Defense 0.523 0.204	0.034	0.038	0.006	0.000 0.220 0.146
	PGD-AT [27] 0.527 0.217 FD [15] 0.528 0.226 SAT [23] 0.529 0.184 RotNet-AT [21] 0.516 0.220 SOAP [22] 0.432 0.024 APAE [46] 0.510 0.215 PrincipaLS (ours) 0.498 0.274	0.168 0.189 0.110 0.163 0.002 0.048 0.223	0.154 0.181 0.092 0.158 0.000 0.050 0.217	0.100 0.132 0.040 0.113 0.002 0.011 0.175	0.000 0.221 0.198 0.002 0.229 0.212 0.000 0.199 0.165 0.000 0.229 0.200 0.181 0.202 0.120 0.000 0.207 0.149 0.051 0.308 0.249

Analysis

• PrincipaLS reconstructs every input example to the known class (digit 2).

Analysis

- (a) No Defense under clean data
 (b) No Defense under PGD attack
 (c) PGD-AT under PGD attack
 (d) PrincipaLS under PGD attack
- PrincipaLS enlarges the reconstruction errors of anomalous data to a great extent.

