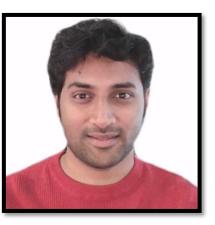


Spatio-Temporal Pixel-Level Contrastive Learningbased Source-Free Domain Adaptation for Video Semantic Segmentation

WED-AM-220

Shao-Yuan Lo

Poojan Oza



Sumanth Chennupati

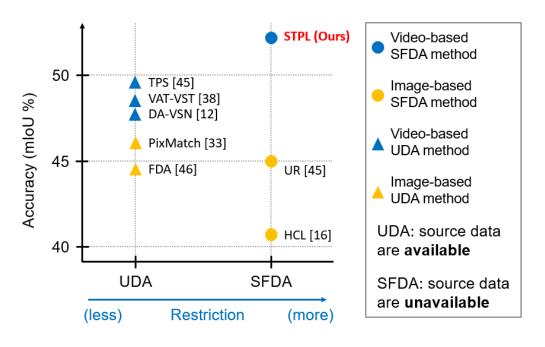
Alejandro Galindo

Vishal M. Patel

CVPR 2023

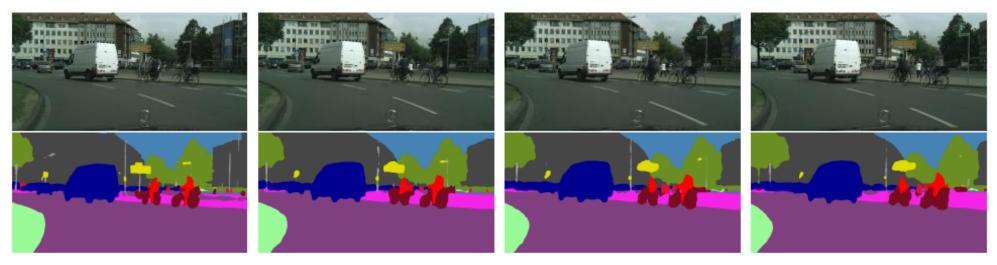
Contributions

- We propose the first Source-Free Domain Adaptation (SFDA) method for Video Semantic Segmentation (VSS).
- The proposed method is based on a novel Spatio-Temporal Contrastive Learning (STPL) framework.
- The proposed STPL outperforms various state-of-the-art domain adaptation approaches (CVPR'21, ECCV'22, etc.).



Recall: Video Semantic Segmentation

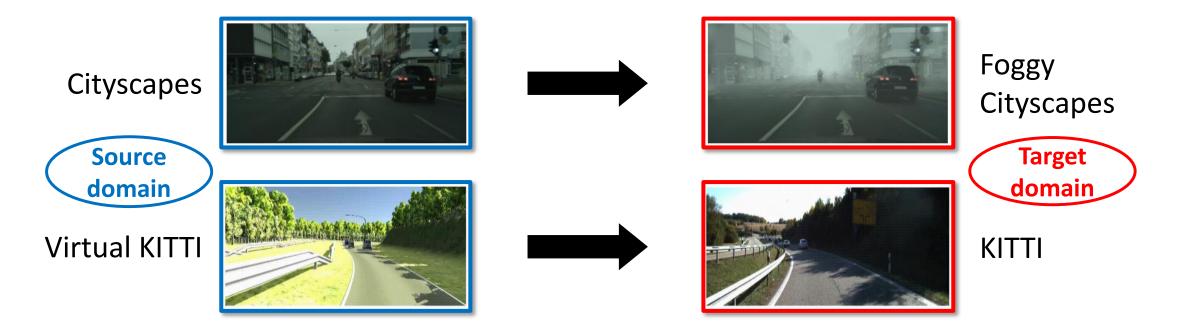
- Video semantic segmentation (VSS) aims to predict pixel-level semantics for each video frame.
- Compared to image semantic segmentation (ISS), temporal information can be exploited to improve either accuracy or inference speed.



[Jain et al. CVPR'19]

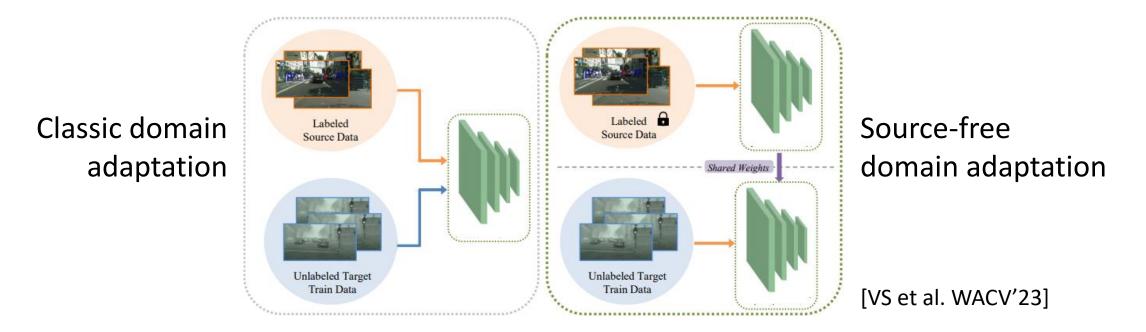
Recall: Domain Shifts

- Scenario: Training (source) data and test (target) data are from different domains (i.e. datasets).
- Setting: Given a labeled source dataset and an unlabeled target dataset, learn a model for the target domain.



Source-Free Domain Adaptation

- Scenario: Training (source) and test (target) data are from different domains, and we cannot access to the source data (e.g. privacy).
- Setting: Given a source-trained model and an unlabeled target dataset, adapt the model to the target domain.

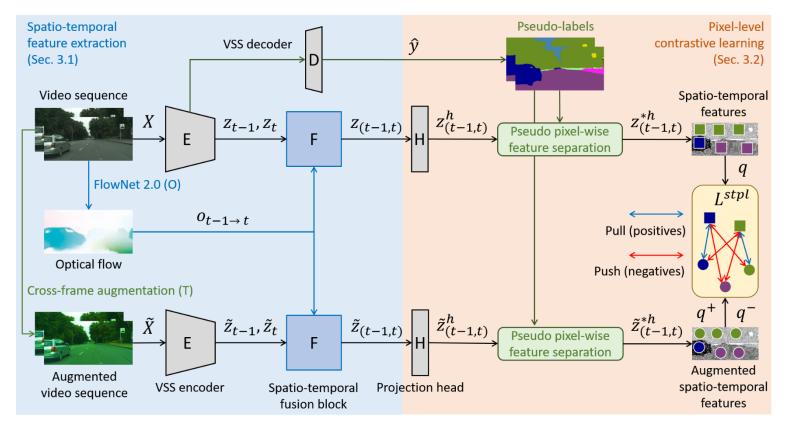


Challenges

- Classic domain adaptation (UDA) for VSS methods are **not applicable** to the source-free domain adaptation (SFDA) setting.
- SFDA for ISS methods do not consider the **temporal information**.
- No access to any labeled training data.

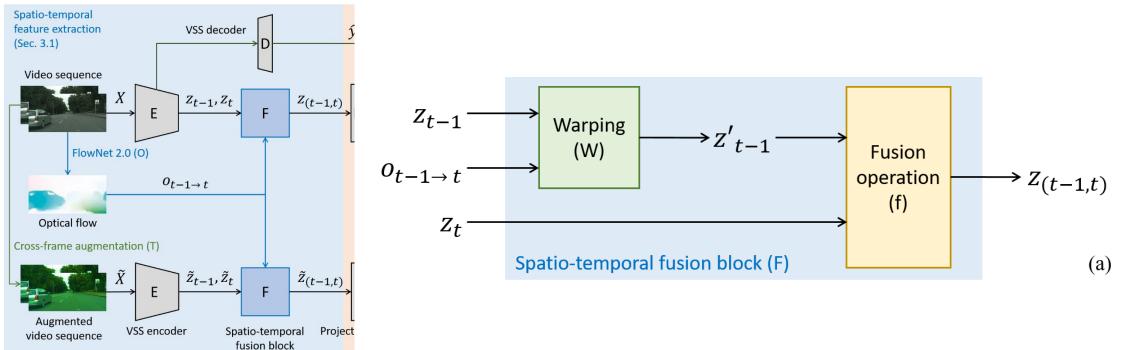
Spatio-Temporal Pixel-Level Contrastive Learning

- Spatio-temporal feature extraction
- Pixel-level contrastive learning



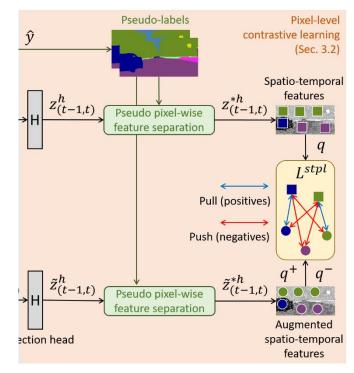
Spatio-Temporal Feature Extraction

- Spatio-temporal fusion block
 - Feature warping by optical flow (temporal information)
 - Fusion operation: concatenation, element-wise addition, 1x1 convolution, attention module, etc.



Pixel-Level Contrastive Learning

- Pseudo-labels are used for pseudo pixel-wise feature separation
- Positive samples: Pixels of the same semantic class
- Negative samples: Pixels of different semantic classes



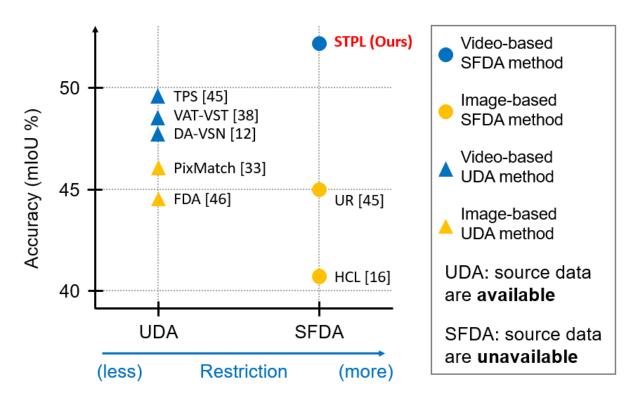
Pixel-wise SimCLR

$$\mathcal{L}_q^{stpl} = \frac{-1}{|P_q|} \sum_{q^+ \in P_q} \log \frac{\exp(q \cdot q^+/\tau)}{\sum_{q^- \in N_q} \exp(q \cdot q^-/\tau)}$$

Results

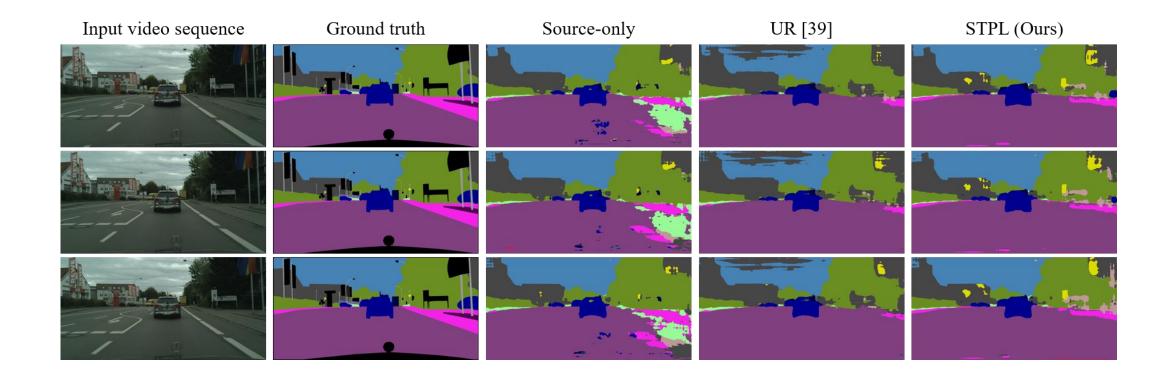
• Benchmark: VIPER → Cityscapes-Seq

Method	Design	DA	mIoU
Source-only	-	-	37.1
FDA [46] (CVPR'20)	Image	UDA	44.4
PixMatch [33] (CVPR'21)	Image	UDA	46.7
RDA [17] (ICCV'21)	Image	UDA	44.4
UR [39] (CVPR'21)	Image	SFDA	45.0
HCL [16] (NeurIPS'21)	Image	SFDA	41.5
DA-VSN [12] (ICCV'21)	Video	UDA	47.8
VAT-VST [38] (AAAI'22)	Video	UDA	48.7
TPS [45] (ECCV'22)	Video	UDA	48.9
DA-VSN* [12] (ICCV'21)	Video	SFDA	45.3
VAT-VST* [38] (AAAI'22)	Video	SFDA	43.6
TPS* [45] (ECCV'22)	Video	SFDA	27.8
STPL (Ours)	Video	SFDA	52.5
Oracle	-	-	69.9



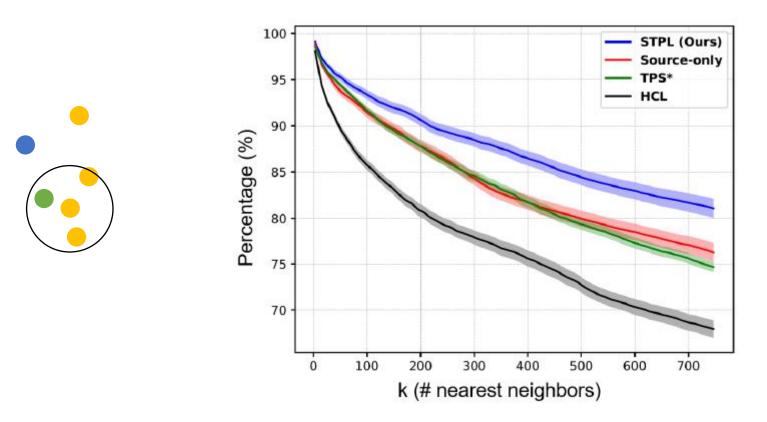
Results

• Benchmark: VIPER → Cityscapes-Seq



Analysis

• The percentage of same-class pixel representations among the k-nearest neighbors in the feature space.



Conclusion

- We propose the first Source-Free Domain Adaptation (SFDA) method for Video Semantic Segmentation (VSS).
- The proposed method is based on a novel Spatio-Temporal Contrastive Learning (STPL) framework.
- The proposed STPL outperforms various state-of-the-art domain adaptation approaches (CVPR'21, ECCV'22, etc.).

