

Spatio-Temporal Pixel-Level Contrastive Learning-based Source-Free Domain Adaptation for Video Semantic Segmentation

Shao-Yuan Lo¹, Poojan Oza², Sumanth Chennupati², Alejandro Galindo², Vishal M. Patel¹

¹Johns Hopkins University, ²Amazon

Contributions

- We propose the first Source-Free Domain Adaptation (SFDA) method for Video Semantic Segmentation (VSS).
- The proposed method is based on a novel Spatio-Temporal Contrastive Learning (STPL) framework.
- The proposed STPL outperforms various state-of-the-art domain adaptation approaches (CVPR'21, ECCV'22, etc.).

Background

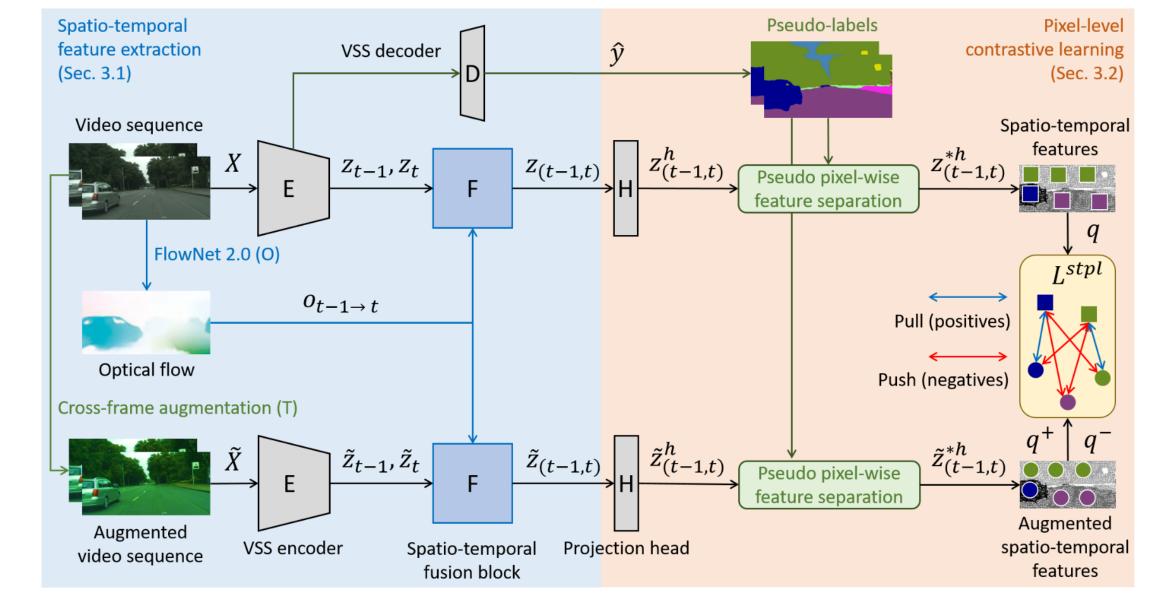
- Consider the scenario that the **training (source) data** and **test (target) data** are from different domains (i.e. datasets). This would cause accuracy drop on target data due to the **domain shift** problem.
- UDA: Given a labeled source dataset and an unlabeled target dataset, learn a model for the target domain.
- SFDA: Given a source-trained model and an unlabeled target dataset, adapt the model to the target domain.
- SFDA does not require the access to source datasets, which are usually private or restrict.
- SFDA is more transmission efficient since a source-trained model is usually much smaller than a source dataset.



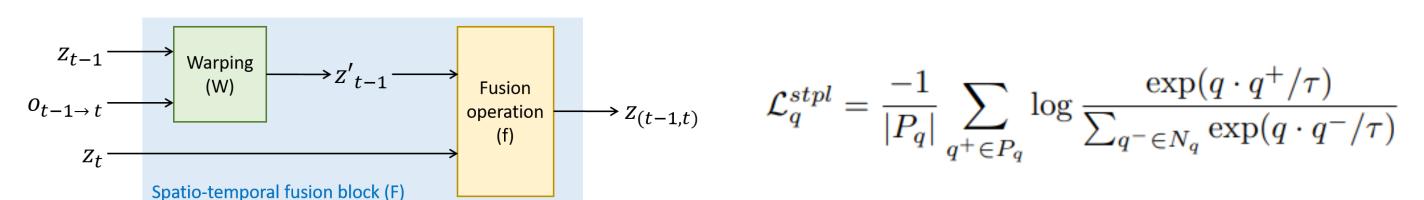
Challenges

- SFDA has not been explored for video data.
- Existing UDA for VSS methods are not applicable to the SFDA setting.
- SFDA methods for image data do not consider temporal information.
- No access to any labeled training data.

Method



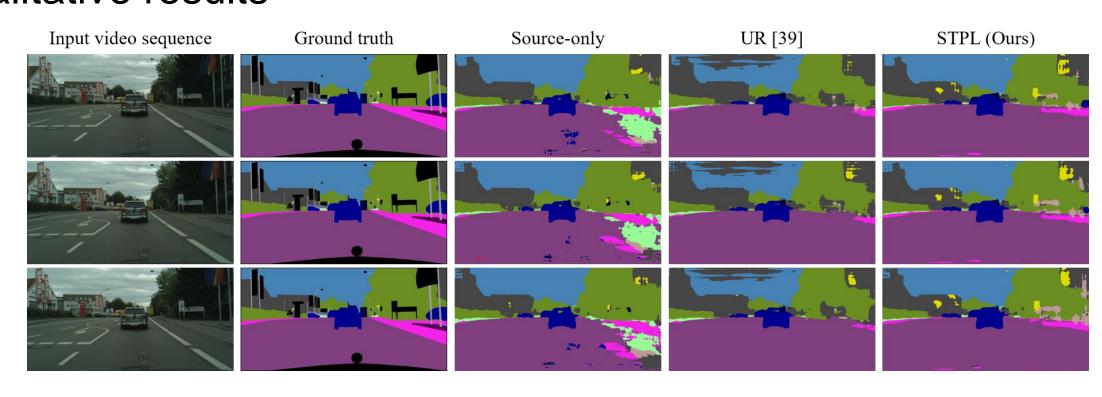
- Spatio-temporal feature extraction
 - Feature warping by **optical flow** (temporal information)
 - Fusion operation: concatenation, 1x1 convolution, attention module, etc.



- Pixel-Level Contrastive Learning
 - Pseudo-labels are used for pseudo pixel-wise feature separation
- Pixel-wise SimCLR
- Positive samples: Pixels of the same semantic class
- Negative samples: Pixels of different semantic classes

Results

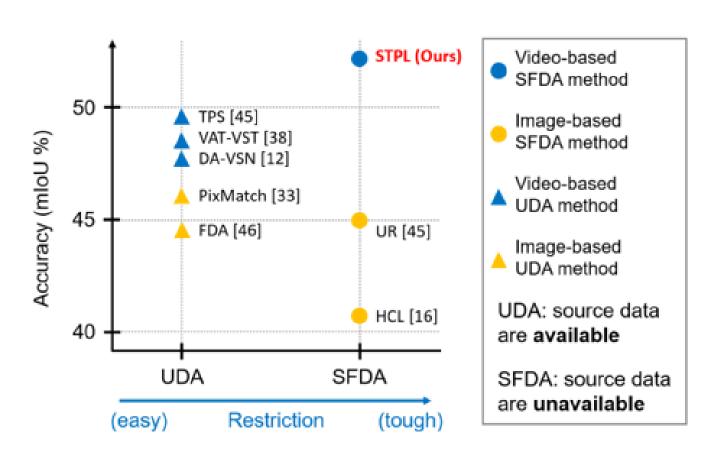
Qualitative results



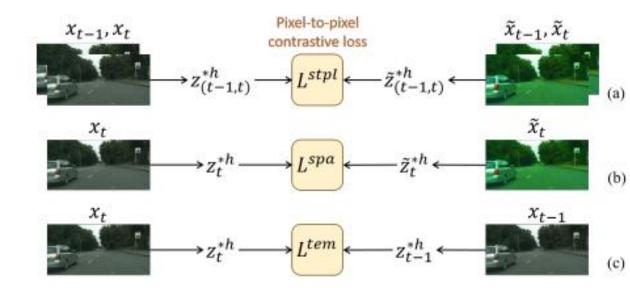
Results

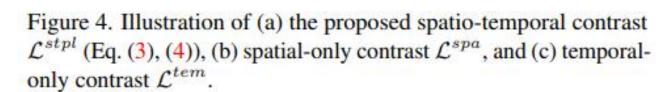
Quantitative results

Method	Design	DA	mIoU
Source-only	-	-	37.1
FDA [46] (CVPR'20)	Image	UDA	44.4
PixMatch [33] (CVPR'21)	Image	UDA	46.7
RDA [17] (ICCV'21)	Image	UDA	44.4
UR [39] (CVPR'21)	Image	SFDA	45.0
HCL [16] (NeurIPS'21)	Image	SFDA	41.5
DA-VSN [12] (ICCV'21)	Video	UDA	47.8
VAT-VST [38] (AAAI'22)	Video	UDA	48.7
TPS [45] (ECCV'22)	Video	UDA	48.9
DA-VSN* [12] (ICCV'21)	Video	SFDA	45.3
VAT-VST* [38] (AAAI'22)	Video	SFDA	43.6
TPS* [45] (ECCV'22)	Video	SFDA	27.8
STPL (Ours)	Video	SFDA	52.5
Oracle	-	-	69.9



Ablation study





Method / Objective function	mIoU
Source-only	37.1
Vanilla Self-training	45.4 (+8.3)
Duplicate CL Temporal-only CL (\mathcal{L}^{tem})	45.7 (+8.6) 47.4 (+10.3)
Spatial-only CL (\mathcal{L}^{spa})	51.1 (+14.0)
Naïve T+S CL $(\mathcal{L}^{tem} + \mathcal{L}^{spa})$	51.4 (+14.3)
STPL (Ours; \mathcal{L}^{stpl})	52.5 (+15.4)

 Analysis: The percentage of same-class pixel representations among the k-nearest neighbors in the feature space.

