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Recall: Adversarial Examples

• Deep networks are vulnerable to adversarial examples.

𝑓𝜃 = "𝐷𝑜𝑔"

𝑓𝜃 + = "𝐶𝑎𝑡"
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Recall: Adversarial Examples

• Dataset: CIFAR-10

• Network: ResNet-50
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Recall: Domain Shifts 

• Scenario: Training (source) data and test (target) data are from 
different domains (i.e. datasets).

• Setting: Given a labeled source dataset and an unlabeled target 
dataset, learn a model for the target domain.

Virtual KITTI KITTI

Cityscapes
Foggy 
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Source 
domain

Target 
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Recall: Domain Shifts 

• Source dataset: Cityscapes

• Target dataset: Foggy Cityscapes

• Network: DeepLabv2

Source 
domain

Target 
domain

Cityscapes Foggy Cityscapes
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• Novel attacks
[Lo & Patel, AVSS’21]

• Empirical defenses
[Lo et al. ICIP’21] [Lo & Patel, ICIP’21] 

• Generalizable defenses
[Lo & Patel, IEEE T-IP’21]

• Defense for less explored tasks
[Lo et al. IEEE T-PAMI’22]

• Unsupervised domain adaptation
[Lo et al. IROS’22]

• Source-free domain adaptation
[Lo et al. CVPR’23]

• Adversarial defense for domain adaptation
[Lo & Patel, ACCV’22]

• Adversarial defense via domain adaptation
[In-progress work]
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IEEE Transactions on Image Processing (T-IP), 2021
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Adversarial Video Types

PGDClean ROA SPAAF

How to simultaneously defend against 
multiple types of attacks?

• PGD:
Projective gradient descent
[Madry et al. ICLR’18]

• ROA:
Rectangular occlusion
[Wu et al. ICLR’20]

• AF:
Adversarial Framing
[Zajac et al. AAAI’19]

• SPA:
Salt-and-Pepper noise
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Problem: Multi-perturbation Robustness

• Standard adversarial training has poor multi-perturbation robustness.

• Training: δPGD

• Test: Clean, δPGD, δROA, δAF, δSPA

Generate one type of
adversarial examples

Train model parameters
[Madry et al. ICLR’18]
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Problem: Multi-perturbation Robustness

• Average adversarial training is better, but not enough.

• Training: Clean, δPGD, δROA, δAF, δSPA

• Test: Clean, δPGD, δROA, δAF, δSPA

Generate multiple types of 
adversarial examples

Train model parameters [Tramèr & Boneh NeurIPS’19]
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Observation: Distinct Data Distributions

• Why average adversarial training is not an ideal strategy?

• Example: Clean vs. PGD.

• Clean and PGD have distinct data distributions.

• The statistics estimation at BN may be confused when facing a 
mixture distribution.

[Xie et al. CVPR’20]
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Observation: Distinct Data Distributions

• Example: Clean vs. PGD.

• An auxiliary BN guarantees that data from different distributions 
are normalized separately.

[Xie et al. CVPR’20]
13



Extension for Multi-perturbation Robustness

• What about multiple attack types (e.g., Clean, PGD, ROA, AF, SPA)?

• Our assumption: Different attack types have distinct data distributions.

14PGDClean ROA SPAAF



Our Solution: Multi-BN Structure

• Example: 
• Known: Clean, PGD, ROA

• Unforeseen: AF, SPA

• Lp-norm attacks: PGD, SPA

• Physically realizable attacks: ROA, AF
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Our Solution: Multi-BN Structure

• Training: Clean, δPGD, δROA

• Test: Clean, δPGD, δROA, δAF, δSPA

Generate multiple types of 
adversarial examples

Train model parameters

Clean data

16



BN Selection Module

• At inference time, the input data have to pass through the 
corresponding BN branch automatically.

• The adversarial video detector is achieved by a video classifier.

• Gumbel-Softmax function [Jang et al. ICLR’17] is a differentiable
approximation of the argmax operation.

• Use Gumbel-Softmax scores as ratio factors to weight each BN 
branch’s output features.
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Entire Framework

• End-to-end pipeline:
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Results

Dataset: UCF-101

Dataset: HMDB-51
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Recall: One-class Novelty Detection

• One-class novelty detection model is trained with examples of 
a particular class and is asked to identify whether a query 
example belongs to the same known class.

• Example:
• Known class (normal data): 8

• Novel classes (anomalous data): 0-7 & 9 (the rest of classes)

Normal data

Training data Test data

Normal data

Anomalous data
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Recall: One-class Novelty Detection

• Most recent advances are based on the autoencoder architecture.

• Given an autoencoder that learns the distribution of the known class, 
we expect that the normal data are reconstructed accurately while 
the anomalous data are not.

Normal data

Training data Test data Reconstructions
(expected)

AE

Low error

High error

Normal

Anomalous
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Attacking One-class Novelty Detection

• How to generate adversarial examples against a novelty detector?

• If a test example is normal, maximize the reconstruction error.

• If a test example is anomalous, minimize the reconstruction error.

Normal data

Training data Adversarial examples Reconstructions
(expected)

AE

High error

Low error

Anomalous 

Normal 
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Goal: Adversarially Robust Novelty Detection

• Novelty detectors are vulnerable to adversarial attacks.

• Adversarially robust method specifically designed for  
novelty detectors is needed.

• A new research problem.
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Observation: Generalizability 

• Unique property: Preference for poor generalization of 
reconstruction ability.

• However, autoencoders have good generalizability.

Normal data

Training data Test data

AE

Reconstructions

Low error

Low error

?

?
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Observation: Feature Denoising

• Adversarial perturbations can be removed in the feature domain.

[Xie et al. CVPR’19]
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Our Solution

• Observations: Generalizability and Feature Denoising.

• Assumption: One can largely manipulate the latent space of a novelty 
detector to remove adversaries to a great extent, and this would not 
hurt the model capacity but helps if in a proper way.

• Solution: Learning principal latent space.
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PCA Rephrased

• h() computes the mean vector and the first k principal components 
of the given data collection X:

• f() performs the forward PCA:

• g() performs the inverse PCA:

228



Cascade PCA Process

• Vector-PCA performs PCA on the vector dimension.

• Spatial-PCA performs PCA on the spatial dimension.

v

h

w

(s = h x w)
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Cascade PCA Process

• Step 1: Forward Vector-PCA, i.e., fv()

𝒁𝑎𝑑𝑣 ∈ ℝ𝑠×𝑣 𝒁𝑉 ∈ ℝ𝑠×1

Latent space Vector-PCA space
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Cascade PCA Process

• Step 2: Forward Spatial-PCA, i.e., fs()

𝒁𝑉 ∈ ℝ𝑠×1 𝒁𝑆 ∈ ℝ𝑘𝑆×1

Spatial-PCA spaceVector-PCA space
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Cascade PCA Process

• Step 3: Inverse Spatial-PCA, i.e., gs()

• Step 4: Inverse Vector-PCA, i.e., gv()

𝒁𝑆 ∈ ℝ𝑘𝑆×1 𝒁𝑝𝑙𝑠 ∈ ℝ𝑠×𝑣

Principal latent spaceSpatial-PCA space
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Learning Principal Latent Components

• Principal latent components:

• Training time: Train along with the network 
weights by exponential moving average (EMA).

• Inference time: Perform the cascade PCA process 
with the fixed and well-trained parameters:
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Defense Mechanism

• Vector-PCA replaces the 
perturbed latent vectors 
with the clean principal 
latent vector.

• Spatial-PCA removes the 
remaining perturbations 
on the Vector-PCA map.
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Defense Mechanism

• Combine adversarial training.

• The proposed PrincipaLS process can robustify any AE-based 
novelty detectors.
• AE, VAE, AAE, ALOCC (CVPR’18), GPND (NeurIPS’18), etc.
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Results 

• Evaluation metric: mean of AUROC

• PrincipaLS is effective on 5 datasets against 6 attacks for 7 novelty 
detection methods.
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Analysis

• PrincipaLS reconstructs every input example to the known class (digit 2).
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Analysis

• (a) No Defense under clean data    (b) No Defense under PGD attack
(c) PGD-AT under PGD attack          (d) PrincipaLS under PGD attack

• PrincipaLS enlarges the reconstruction errors of anomalous data to a 
great extent.

38



CVPR 2023
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Recall: Video Semantic Segmentation

• Video semantic segmentation (VSS) aims to predict pixel-level 
semantics for each video frame.

• Compared to image semantic segmentation (ISS), temporal information 
can be exploited to improve either accuracy or inference speed.

[Jain et al. CVPR’19]
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Source-Free Domain Adaptation 

• Scenario: Training (source) and test (target) data are from different 
domains, and we cannot access to the source data (e.g. privacy).

• Setting: Given a source-trained model and an unlabeled target dataset, 
adapt the model to the target domain.

Classic domain 
adaptation

Source-free 
domain adaptation

[VS et al. WACV’23]
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Challenges

• Classic domain adaptation (UDA) for VSS methods are not applicable 
to the source-free domain adaptation (SFDA) setting.

• SFDA for ISS methods do not consider the temporal information.

• No access to any labeled training data.
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Spatio-Temporal Pixel-Level Contrastive Learning

• Spatio-temporal feature extraction

• Pixel-level contrastive learning
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Spatio-Temporal Feature Extraction

• Spatio-temporal fusion block
• Feature warping by optical flow (temporal information)

• Fusion operation: concatenation, element-wise addition, 1x1 convolution, 
attention module, etc.
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Pixel-Level Contrastive Learning

• Pseudo-labels are used for pseudo pixel-wise feature separation

• Positive samples: Pixels of the same semantic class

• Negative samples: Pixels of different semantic classes

Pixel-wise SimCLR
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Results

• Benchmark: VIPER → Cityscapes-Seq
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Results

• Benchmark: VIPER → Cityscapes-Seq
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Analysis

• The percentage of same-class pixel representations among the 
k-nearest neighbors in the feature space.
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• Novel attacks
[Lo & Patel, AVSS’21]

• Empirical defenses
[Lo et al. ICIP’21] [Lo & Patel, ICIP’21] 

• Generalizable defenses
[Lo & Patel, IEEE T-IP’21]

• Defense for less explored tasks
[Lo et al. IEEE T-PAMI’22]

• Unsupervised domain adaptation
[Lo et al. IROS’22]

• Source-free domain adaptation
[Lo et al. CVPR’23]

• Adversarial defense for domain adaptation
[Lo & Patel, ACCV’22]

• Adversarial defense via domain adaptation
[In-progress work]
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