

Robust Computer Vision Against Adversarial Examples and Domain Shifts

Shao-Yuan Lo

April 14, 2023

Recall: Adversarial Examples

• Deep networks are **vulnerable** to adversarial examples.

Recall: Adversarial Examples

- Dataset: CIFAR-10
- Network: ResNet-50

Recall: Domain Shifts

- Scenario: Training (source) data and test (target) data are from different domains (i.e. datasets).
- Setting: Given a labeled source dataset and an unlabeled target dataset, learn a model for the target domain.

Recall: Domain Shifts

- Source dataset: Cityscapes
- Target dataset: Foggy Cityscapes
- Network: DeepLabv2

Defending Against Multiple and Unforeseen Adversarial Videos

Shao-Yuan Lo, Student Member, IEEE and Vishal M. Patel, Senior Member, IEEE

IEEE Transactions on Image Processing (T-IP), 2021

Adversarial Video Types

- PGD: Projective gradient descent [Madry et al. ICLR'18]
- ROA: Rectangular occlusion [Wu et al. ICLR'20]
- AF: Adversarial Framing [Zajac et al. AAAI'19]
- SPA: Salt-and-Pepper noise

How to simultaneously defend against multiple types of attacks?

Problem: Multi-perturbation Robustness

- Standard adversarial training has poor multi-perturbation robustness.
- Training: δ_{PGD}
- Test: Clean, δ_{PGD} , δ_{ROA} , δ_{AF} , δ_{SPA}

$$\theta^* = \arg\min_{\theta} \mathbb{E}_{(x,y)\sim\mathbb{D}} \left[\max_{\delta\in\mathbb{S}} L(x+\delta,y;\theta) \right]$$

Generate **one type** of adversarial examples
Train model parameters

Problem: Multi-perturbation Robustness

- Average adversarial training is better, but not enough.
- Training: Clean, δ_{PGD} , δ_{ROA} , δ_{AF} , δ_{SPA}
- Test: Clean, δ_{PGD} , δ_{ROA} , δ_{AF} , δ_{SPA}

$$\theta^* = \arg\min_{\theta} \mathbb{E}_{(x,y)\sim \mathbb{D}} \left[\sum_{i=1}^{N} \max_{\delta_i \in \mathbb{S}_i} L(x + \delta_i, y; \theta) \right]$$

Generate **multiple types** of
adversarial examples
Train model parameters [Tramèr & Boneh NeurIPS'19]

Observation: Distinct Data Distributions

- Why average adversarial training is **not** an ideal strategy?
- Example: Clean vs. PGD.
- Clean and PGD have distinct data distributions.
- The statistics estimation at **BN** may be confused when facing a mixture distribution.

[Xie et al. CVPR'20]

Observation: Distinct Data Distributions

- Example: Clean vs. PGD.
- An **auxiliary BN** guarantees that data from different distributions are normalized separately.

[Xie et al. CVPR'20]

Extension for Multi-perturbation Robustness

- What about **multiple** attack types (e.g., Clean, PGD, ROA, AF, SPA)?
- Our assumption: Different attack types have **distinct** data distributions.

Our Solution: Multi-BN Structure

- Example:
 - Known: Clean, PGD, ROA
 - Unforeseen: AF, SPA
- Lp-norm attacks: PGD, SPA
- Physically realizable attacks: ROA, AF

Our Solution: Multi-BN Structure

Train model parameters

BN Selection Module

- At inference time, the input data have to pass through the corresponding BN branch **automatically**.
- The adversarial video detector is achieved by a video classifier.
- Gumbel-Softmax function [Jang et al. ICLR'17] is a differentiable approximation of the *argmax* operation.
- Use Gumbel-Softmax scores as ratio factors to weight each BN branch's output features.

Entire Framework

• End-to-end pipeline: $\tilde{y} = f(x + \delta_i; \theta^c, \theta^b, \theta^{det})$

Results

Model	Clean	PGD	ROA	AF	SPA	Mean	Union
No Defense	89.0	3.3	0.5	1.6	8.4	20.6	0.0
TRADE [19] (ICML'19) AVG [26] (NeurIPS'19) MAX [26] (NeurIPS'19) MSD [27] (ICML'20)	82.3 68.9 72.8 70.2	29.0 38.1 32.5 43.2	5.7 51.4 31.0 1.7	3.3 18.5 5.8 1.6	42.2 49.6 49.4 56.0	32.5 45.3 38.3 34.6	1.9 17.3 5.5 0.7
MultiBN (ours)	74.2	44.6	58.6	44.3	53.7	55.1	34.8

Dataset: UCF-101

Dataset: HMDB-51

Model	Clean	PGD	ROA	AF	SPA	Mean	Union
No Defense	65.1	0.0	0.0	0.0	0.3	13.1	0.0
TRADE [19] (ICML'19)	54.8	6.8	0.3	0.0	20.5	16.5	0.0
AVG [26] (NeurIPS'19)	39.0	14.3	17.1	2.8	26.2	19.9	1.4
MAX [26] (NeurIPS'19)	48.6	13.9	16.0	0.1	30.3	21.8	0.0
MSD [27] (ICML'20)	41.4	18.2	0.1	0.0	31.2	18.2	0.0
MultiBN (ours)	51.1	22.0	23.7	7.8	29.9	26.9	5.0

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022

Adversarially Robust One-class Novelty Detection

Shao-Yuan Lo, Student Member, IEEE, Poojan Oza, Student Member, IEEE, and Vishal M. Patel, Senior Member, IEEE

Recall: One-class Novelty Detection

- One-class novelty detection model is trained with examples of a particular class and is asked to identify whether a query example belongs to the same known class.
- Example:
 - Known class (normal data): 8
 - Novel classes (anomalous data): 0-7 & 9 (the rest of classes)

Recall: One-class Novelty Detection

- Most recent advances are based on the autoencoder architecture.
- Given an autoencoder that learns the distribution of the known class, we expect that the normal data are reconstructed accurately while the anomalous data are not.

Attacking One-class Novelty Detection

- How to generate adversarial examples against a novelty detector?
- If a test example is **normal**, **maximize** the reconstruction error.
- If a test example is **anomalous**, **minimize** the reconstruction error.

Goal: Adversarially Robust Novelty Detection

- Novelty detectors are **vulnerable** to adversarial attacks.
- Adversarially robust method specifically designed for novelty detectors is needed.
- A new research problem.

Observation: Generalizability

- Unique property: Preference for **poor** generalization of reconstruction ability.
- However, autoencoders have good generalizability.

Observation: Feature Denoising

• Adversarial perturbations can be removed in the feature domain.

[Xie et al. CVPR'19]

Our Solution

• **Observations**: Generalizability and Feature Denoising.

• Assumption: One can largely manipulate the latent space of a novelty detector to remove adversaries to a great extent, and this would not hurt the model capacity but helps if in a proper way.

• Solution: Learning principal latent space.

PCA Rephrased

• *h()* computes the **mean vector** and the first *k* **principal components** of the given data collection *X*:

 $h(\mathbf{X},k): \mathbf{X} \to \{\boldsymbol{\mu}, \tilde{\mathbf{U}}\}$

• *f()* performs the forward PCA:

$$\begin{split} f(\mathbf{X}; \boldsymbol{\mu}, \tilde{\mathbf{U}}) &= (\mathbf{X} - \boldsymbol{\mu} \mathbf{1}^{\top}) \tilde{\mathbf{U}} \\ \mathbf{X}_{pca} &= f(\mathbf{X}; \boldsymbol{\mu}, \tilde{\mathbf{U}}) \end{split}$$

• *g()* performs the inverse PCA:

$$\begin{split} g(\mathbf{X}_{pca}; \boldsymbol{\mu}, \tilde{\mathbf{U}}) &= \mathbf{X}_{pca} \tilde{\mathbf{U}}^\top + \boldsymbol{\mu} \mathbf{1}^\top \\ \hat{\mathbf{X}} &= g(f(\mathbf{X}; \boldsymbol{\mu}, \tilde{\mathbf{U}}); \boldsymbol{\mu}, \tilde{\mathbf{U}}) \end{split}$$

- Vector-PCA performs PCA on the vector dimension.
- **Spatial-PCA** performs PCA on the **spatial** dimension.

V

h

• Step 1: Forward Vector-PCA, i.e., fv()

$$\boldsymbol{Z}_{adv} \in \mathbb{R}^{s \times v} \longrightarrow \boldsymbol{Z}_{V} \in \mathbb{R}^{s \times 2}$$

Latent space

Vector-PCA space

• Step 2: Forward Spatial-PCA, i.e., fs()

$$\mathbf{Z}_V \in \mathbb{R}^{s \times 1} \quad \longrightarrow \quad \mathbf{Z}_S \in \mathbb{R}^{k_S \times 1}$$

Vector-PCA space

Spatial-PCA space

$$\{\boldsymbol{\mu}_S, \tilde{\mathbf{U}}_S\} = h_S(\mathbf{Z}_V^{\top}, k_S)$$
$$\mathbf{Z}_S^{\top} = f_S(\mathbf{Z}_V^{\top}; \boldsymbol{\mu}_S, \tilde{\mathbf{U}}_S)$$

- Step 3: Inverse Spatial-PCA, i.e., gs()
- Step 4: Inverse Vector-PCA, i.e., gv()

$$\boldsymbol{Z}_{S} \in \mathbb{R}^{k_{S} \times 1} \longrightarrow \boldsymbol{Z}_{pls} \in \mathbb{R}^{s \times v}$$

Spatial-PCA space

Principal latent space

 $\hat{\mathbf{Z}}_V^{\top} = g_S(\mathbf{Z}_S^{\top}; \boldsymbol{\mu}_S, \tilde{\mathbf{U}}_S)$

$$\mathbf{Z}_{plr} = g_V(\hat{\mathbf{Z}}_V; \boldsymbol{\mu}_V, \tilde{\mathbf{U}}_V)$$

Learning Principal Latent Components

• Principal latent components:

 $\{\mu_V, \tilde{\mathbf{U}}_V, \mu_S, \tilde{\mathbf{U}}_S\}$

• Training time: Train along with the network weights by exponential moving average (EMA). $\{\mu_V^t, \tilde{\mathbf{U}}_V^t\} = \{\mu_V^{t-1}, \tilde{\mathbf{U}}_V^{t-1}\} + \eta_V(h_V(\mathbf{Z}^t) - \{\mu_V^{t-1}, \tilde{\mathbf{U}}_V^{t-1}\})$

 $\{\boldsymbol{\mu}_{S}^{t}, \tilde{\mathbf{U}}_{S}^{t}\} = \{\boldsymbol{\mu}_{S}^{t-1}, \tilde{\mathbf{U}}_{S}^{t-1}\} + \eta_{S}(h_{S}(\mathbf{Z}^{t}) - \{\boldsymbol{\mu}_{S}^{t-1}, \tilde{\mathbf{U}}_{S}^{t-1}\})$

• Inference time: Perform the cascade PCA process with the fixed and well-trained parameters:

 $\{\boldsymbol{\mu}_V^*, \tilde{\mathbf{U}}_V^*, \boldsymbol{\mu}_S^*, \tilde{\mathbf{U}}_S^*\}$

Defense Mechanism

- Vector-PCA replaces the perturbed latent vectors with the clean principal latent vector.
- Spatial-PCA removes the remaining perturbations on the Vector-PCA map.

Defense Mechanism

- Combine adversarial training.
- The proposed PrincipaLS process can robustify any AE-based novelty detectors.
 - AE, VAE, AAE, ALOCC (CVPR'18), GPND (NeurIPS'18), etc.

Results

- Evaluation metric: mean of AUROC
- PrincipaLS is effective on **5** datasets against **6** attacks for **7** novelty detection methods.

Dataset	Defense Clean FGSM [11]	PGD [27]	MI-FGSM [36]	MultAdv [37]	AF [38] Black-box [47] Average
	No Defense 0.964 0.350	0.051	0.022	0.170	0.014 0.790 0.337
MNIST [48]	PGD-AT [27] 0.961 0.604 FD [15] 0.963 0.612 SAT [23] 0.947 0.527 RotNet-AT [21] 0.967 0.598 SOAP [22] 0.940 0.686 APAE [46] 0.925 0.428 PrincipaLS (ours) 0.973 0.812	0.357 0.366 0.295 0.333 0.504 0.104 0.706	0.369 0.379 0.306 0.333 0.506 0.105 0.707	0.444 0.453 0.370 0.424 0.433 0.251 0.725	0.155 0.691 0.512 0.142 0.700 0.516 0.142 0.652 0.463 0.101 0.695 0.493 0.088 0.863 0.574 0.022 0.730 0.366 0.636 0.866 0.775
	No Defense 0.523 0.204	0.034	0.038	0.006	0.000 0.220 0.146
SHTech [52]	PGD-AT [27] 0.527 0.217 FD 15 0.528 0.226 SAT [23] 0.529 0.184 RotNet-AT [21] 0.516 0.220 SOAP [22] 0.432 0.024 APAE [46] 0.510 0.215 PrincipaLS (ours) 0.498 0.274	0.168 0.189 0.110 0.163 0.002 0.048 0.223	0.154 0.181 0.092 0.158 0.000 0.050 0.217	0.100 0.132 0.040 0.113 0.002 0.011 0.175	0.000 0.221 0.198 0.002 0.229 0.212 0.000 0.199 0.165 0.000 0.229 0.200 0.181 0.202 0.120 0.000 0.207 0.149 0.051 0.308 0.249

Analysis

• PrincipaLS reconstructs every input example to the known class (digit 2).

Analysis

- (a) No Defense under clean data
 (b) No Defense under PGD attack
 (c) PGD-AT under PGD attack
 (d) PrincipaLS under PGD attack
- PrincipaLS enlarges the reconstruction errors of anomalous data to a great extent.

Spatio-Temporal Pixel-Level Contrastive Learning-based Source-Free Domain Adaptation for Video Semantic Segmentation

Shao-Yuan Lo¹ Poojan Oza² Sumanth Chennupati² Alejandro Galindo² Vishal M. Patel¹ ¹Johns Hopkins University ²Amazon {sylo, vpatel36}@jhu.edu {poojanku, sumchenn, pagh}@amazon.com

CVPR 2023

Recall: Video Semantic Segmentation

- Video semantic segmentation (VSS) aims to predict pixel-level semantics for each video frame.
- Compared to image semantic segmentation (ISS), temporal information can be exploited to improve either accuracy or inference speed.

[Jain et al. CVPR'19]

Source-Free Domain Adaptation

- Scenario: Training (source) and test (target) data are from different domains, and we cannot access to the source data (e.g. privacy).
- Setting: Given a source-trained model and an unlabeled target dataset, adapt the model to the target domain.

Challenges

- Classic domain adaptation (UDA) for VSS methods are **not applicable** to the source-free domain adaptation (SFDA) setting.
- SFDA for ISS methods do not consider the **temporal information**.
- No access to any labeled training data.

Spatio-Temporal Pixel-Level Contrastive Learning

- Spatio-temporal feature extraction
- Pixel-level contrastive learning

Spatio-Temporal Feature Extraction

- Spatio-temporal fusion block
 - Feature warping by optical flow (temporal information)
 - Fusion operation: concatenation, element-wise addition, 1x1 convolution, attention module, etc.

Pixel-Level Contrastive Learning

- Pseudo-labels are used for pseudo pixel-wise feature separation
- Positive samples: Pixels of the same semantic class
- Negative samples: Pixels of different semantic classes

Pixel-wise SimCLR

$$\mathcal{L}_q^{stpl} = \frac{-1}{|P_q|} \sum_{q^+ \in P_q} \log \frac{\exp(q \cdot q^+/\tau)}{\sum_{q^- \in N_q} \exp(q \cdot q^-/\tau)}$$

Results

• Benchmark: VIPER → Cityscapes-Seq

Method	Design	DA	mIoU
Source-only	-	-	37.1
FDA [46] (CVPR'20) PixMatch [33] (CVPR'21) RDA [17] (ICCV'21)	Image Image Image	UDA UDA UDA	44.4 46.7 44.4
UR [39] (CVPR'21)	Image	SFDA	45.0
HCL [16] (NeurIPS'21)	Image	SFDA	41.5
DA-VSN [12] (ICCV'21)	Video	UDA	47.8
VAT-VST [38] (AAAI'22)	Video	UDA	48.7
TPS [45] (ECCV'22)	Video	UDA	48.9
DA-VSN* [12] (ICCV'21)	Video	SFDA	45.3
VAT-VST* [38] (AAAI'22)	Video	SFDA	43.6
TPS* [45] (ECCV'22)	Video	SFDA	27.8
STPL (Ours)	Video	SFDA	52.5
Oracle	-	-	69.9

Results

• Benchmark: VIPER → Cityscapes-Seq

Analysis

• The percentage of same-class pixel representations among the k-nearest neighbors in the feature space.

Prof. Vishal M. Patel

Poojan Oza

Wei Wang

Jingjing Zheng

Jeya Maria Jose

Jim Thomas

Sumanth Chennupati

Shaoyan Pan

Cheng-Hao Kuo

Alejandro Galindo