

Adversarial Attacks & Defenses in Video

Shao-Yuan Lo Johns Hopkins University

CVPR 2021 Tutorial on Adversarial Machine Learning in Computer Vision June 19, 2021

Outline

- Image-based Adversarial Attacks in Video
 - Attacks
 - Image-based Defenses
 - Video-specific Defenses
- Video-specific Adversarial Attacks
- Conclusion

Outline

• Image-based Adversarial Attacks in Video

- Attacks
- Image-based Defenses
- Video-specific Defenses

Video-specific Adversarial Attacks

Conclusion

Adversarial Attacks in Image

- FGSM [Goodfellow et al. ICLR'15]
- C&W [Carlini et al. SP'17]
- PGD [Madry et al. ICLR'18]
- Adversarial Patch [Brown et al. NeurIPSW'17]
- Rectangular Occlusion Attack (ROA) [Wu et al. ICLR'20]

• A lot more...

Image-based Adversarial Attacks in Video

- Video is a stack of consecutive images.
- A naïve way to generate adversarial videos: Use image-based method directly.

$$x^{adv} = x + \epsilon \cdot sign(\nabla_{x}L(x, y; \theta))$$

Image: $x \in R^{C \times H \times W}$

Video: $x \in R^{F \times C \times H \times W}$

Adversarial Framing (AF)

correct: Boston bull unattacked: Boston bull attacked: maypole

correct: ocarina unattacked: loupe attacked: maypole

correct: tusker unattacked: tusker attacked: maypole

correct: gas pump unattacked: gas pump attacked: maypole

correct: Egyptian cat unattacked: tabby attacked: maypole

Task: Action recognition	Attack	W=1	W=2	W = 3	W = 4	
Dataset: UCF-101	None	85.95%				
	RF	82.57%	80.53%	81.11%	79.74%	
	BF	84.94%	84.73%	84.75%	84.59%	
	AF	65.77%	22.12%	9.45%	2.05%	

Michał Zajac, Konrad Zołna, Negar Rostamzadeh, and Pedro O Pinheiro. Adversarial framing for image and video classification. AAAI 2019.

Salt-and-Pepper Attack (SPA)

- Add unbounded perturbations on a number of randomly selected pixels.
- The perturbation looks like salt-andpepper noise.
- A kind of LO attack.
- Decrease action recognition accuracy from 89.0% to 8.4% on UCF-101.

Multiplicative Adversarial Videos (MultAV)

- Additive: $\mathbf{x}^{t+1} = Clip_{\mathbf{x},\epsilon}^{\ell_{\infty}} \{ \mathbf{x}^{t} + \alpha \cdot sign(\bigtriangledown \mathbf{x}^{t} \mathcal{L}(\mathbf{x}^{t}, \mathbf{y}; \boldsymbol{\theta})) \}$ $\mathbf{x}^{t+1} = Clip_{\mathbf{x},\epsilon}^{\ell_{2}} \{ \mathbf{x}^{t} + \alpha \cdot \frac{\bigtriangledown \mathbf{x}^{t} \mathcal{L}(\mathbf{x}^{t}, \mathbf{y}; \boldsymbol{\theta})}{\|\bigtriangledown \mathbf{x}^{t} \mathcal{L}(\mathbf{x}^{t}, \mathbf{y}; \boldsymbol{\theta})\|_{2}} \}$
- Multiplicative:

$$\begin{aligned} \mathbf{x}^{t+1} &= Clip_{\mathbf{x},\epsilon_m}^{RB-\ell_{\infty}} \left\{ \mathbf{x}^t \odot \alpha_m^{sign(\bigtriangledown_{\mathbf{x}^t}\mathcal{L}(\mathbf{x}^t,\mathbf{y};\boldsymbol{\theta}))} \right\} \\ \mathbf{x}^{t+1} &= Clip_{\mathbf{x},\epsilon_m}^{RB-\ell_2} \left\{ \mathbf{x}^t \odot \alpha_m^{\frac{\bigtriangledown_{\mathbf{x}^t}\mathcal{L}(\mathbf{x}^t,\mathbf{y};\boldsymbol{\theta})}{\|\bigtriangledown_{\mathbf{x}^t}\mathcal{L}(\mathbf{x}^t,\mathbf{y};\boldsymbol{\theta})\|_2} \right\} \end{aligned}$$

Shao-Yuan Lo and Vishal M. Patel. MultAV: Multiplicative Adversarial Videos. 2020.

Multiplicative Adversarial Videos (MultAV)

Task: Action recognition Dataset: UCF-101

	Ν	letwork	Clean	
	3	D ResNet-18	76.90	
MultAV- ℓ_{∞}	MultAV- ℓ_2	MultAV-ROA	MultAV-AF	MultAV-SPA
7.19	2.67	2.30	0.26	4.02

Shao-Yuan Lo and Vishal M. Patel. MultAV: Multiplicative Adversarial Videos. 2020.

Outline

• Image-based Adversarial Attacks in Video

- Attacks
- Image-based Defenses
- Video-specific Defenses
- Video-specific Adversarial Attacks
- Conclusion

Adversarial Training in Video

- Adversarial Training (AT) is considered one of the most effective defenses, especially in the white-box setting.
- Madry et al. [ICLR'18] formulated AT in a min-max optimization framework:

$$\theta^* = \arg\min_{\theta} \mathbb{E}_{(x,y) \sim \mathbb{D}} \left[\max_{\delta \in \mathbb{S}} L(x + \delta, y; \theta) \right]$$

Image: $x \in R^{C \times H \times W}$

Video: $x \in R^{F \times C \times H \times W}$

AT Benchmark in Video

- Dataset: UCF-101 (action recognition)
- Model: 3D ResNet-18 (76.90% clean accuracy)
- Attacks:
 - PGD Linf: ε=4/255, T=5
 - PGD L2: ε=160, T=5
 - MultAV: ε=1.04, T=5
 - ROA: patch size=30x30, T=5
 - SPA: # pixels=100, T=5

Method	PGD Linf	PGD L2	MultAV	ROA	SPA
No Defense	2.56	3.25	7.19	0.16	4.39
AT	33.94	35.05	47.00	41.29	55.99

AT Benchmark in Video

- Dataset: UCF-101 (action recognition)
- Model: 3D ResNeXt-101 (89.0% clean accuracy)
- Attacks:
 - PGD Linf: ε=4/255, T=5
 - ROA: patch size=30x30
 - AF: width=10
 - SPA: #pixels=100, T=5

Method	PGD Linf	ROA	AF	SPA
No Defense	3.3	0.5	1.6	8.3
AT	49.0	69.0	80.5	60.4

Overcomplete Representations Against Adversarial Videos (OUDefend)

• A typical autoencoder downsample features and learn **undercomplete** representations.

https://ai.plainenglish.io/convolutional-autoencoders-cae-with-tensorflow-97e8d8859cbe.

- Input features
- OUDefend learns both undercomplete representations and overcomplete representations (upsample features)

Overcomplete Representations Against Adversarial Videos (OUDefend)

- Undercomplete representations have large receptive fields to collect global information, but it overlooks local details.
- Overcomplete representations have opposite properties.
- OUDefend balances local and global features by learning those two representations.

Overcomplete Representations Against Adversarial Videos (OUDefend)

• Append OUDefend blocks to the target network (after each res block).

Overcomplete Representations Against Adversarial Videos (OUDefend)

PGD attack	No Defense	OUDefend
338		

Method	PGD Linf	PGD L2	MultAV	ROA	SPA
No Defense	2.56	3.25	7.19	0.16	4.39
AT	33.94	35.05	47.00	41.29	55.99
OUDefend	34.18	35.32	47.63	42.00	56.29

How to defend against multiple types of attacks simultaneously?

- Standard AT has suboptimal multi-perturbation robustness.
- Training: δ_{PGD}
- Test: Clean, δ_{PGD} , δ_{ROA} , δ_{AF} , δ_{SPA}

$$\theta^* = \arg\min_{\theta} \mathbb{E}_{(x,y)\sim\mathbb{D}} \left[\max_{\delta\in\mathbb{S}} L(x+\delta,y;\theta) \right]$$

Generate **one type** of adversarial examples

- Average AT is better, but not enough.
- Training: Clean, δ_{PGD} , δ_{ROA} , δ_{AF} , δ_{SPA}
- Test: Clean, δ_{PGD} , δ_{ROA} , δ_{AF} , δ_{SPA}

$$\theta^* = \arg\min_{\theta} \mathbb{E}_{(x,y)\sim\mathbb{D}} \left[\sum_{i=1}^N \max_{\delta_i\in\mathbb{S}_i} L(x+\delta_i, y; \theta) \right]$$

Generate **multiple types** of

adversarial examples

Florian Tramèr and Dan Boneh. Adversarial Training and Robustness for Multiple Perturbations. NeurIPS 2019.

- Why is average AT **not** an ideal strategy?
- Example: Clean vs. PGD.
- Clean and PGD have distinct data distributions.
- The statistics estimation at BN may be confused when facing a mixture distribution.
- An auxiliary BN guarantees that data from different distributions are normalized separately.

Cihang Xie, Mingxing Tan, Boqing Gong, Jiang Wang, Alan Yuille, Quoc Le. Adversarial Examples Improve Image Recognition. CVPR 2020.

- What about **multiple** attack types?
- Example: Clean, PGD, ROA, AF, SPA
- Assumption: Different attack types have **distinct** data distributions.

- What about unforeseen attack types?
- Example:
 - Known: Clean, PGD, ROA
 - Unforeseen: AF, SPA
- Digital attacks: PGD, SPA
- Physically realizable attacks: ROA, AF
- Assumption: Similar attack types have **similar** data distributions.

Shao-Yuan Lo and Vishal M. Patel. Defending Against Multiple and Unforeseen Adversarial Videos. 2020.

- Training: Clean, δ_{PGD} , δ_{ROA}
- Test: Clean, δ_{PGD} , δ_{ROA} , δ_{AF} , δ_{SPA}

$$\theta^* = \arg\min_{\theta} \mathbb{E}_{(x,y)\sim\mathbb{D}} \left[L(x,y;\theta) + \lambda \cdot L(x,y^{det};\theta^{det}) + \sum_{i=1}^{N} \left(\max_{\delta_i\in\mathbb{S}_i} L(x+\delta_i,y;\theta) + \lambda \cdot L(x+\delta_i,y^{det};\theta^{det}) \right) \right]$$

Shao-Yuan Lo and Vishal M. Patel. Defending Against Multiple and Unforeseen Adversarial Videos. 2020.

Dataset: UCF-101

Model	Clean	PGD	ROA	AF	SPA	Mean	Union
No Defense	89.0	3.3	0.5	1.6	8.4	20.6	0.0
TRADE [19] (ICML'19) AVG [26] (NeurIPS'19) MAX [26] (NeurIPS'19) MSD [27] (ICML'20)	82.3 68.9 72.8 70.2	29.0 38.1 32.5 43.2	5.7 51.4 31.0 1.7	3.3 18.5 5.8 1.6	42.2 49.6 49.4 56.0	32.5 45.3 38.3 34.6	1.9 17.3 5.5 0.7
MultiBN (ours)	74.2	44.6	58.6	44.3	53.7	55.1	34.8

Dataset: HMDB-51

Model	Clean	PGD	ROA	AF	SPA	Mean	Union
No Defense	65.1	0.0	0.0	0.0	0.3	13.1	0.0
TRADE [19] (ICML'19)	54.8	6.8	0.3	0.0	20.5	16.5	0.0
AVG [26] (NeurIPS'19)	39.0	14.3	17.1	2.8	26.2	19.9	1.4
MAX [26] (NeurIPS'19)	48.6	13.9	16.0	0.1	30.3	21.8	0.0
MSD [27] (ICML'20)	41.4	18.2	0.1	0.0	31.2	18.2	0.0
MultiBN (ours)	51.1	22.0	23.7	7.8	29.9	26.9	5.0

Shao-Yuan Lo and Vishal M. Patel. Defending Against Multiple and Unforeseen Adversarial Videos. 2020.

Outline

• Image-based Adversarial Attacks in Video

- Attacks
- Image-based Defenses
- Video-specific Defenses

Video-specific Adversarial Attacks

Conclusion

Video-specific Defenses

• Use video's unique properties (mostly temporal information) to defend against adversarial videos (image-based attacks).

• Some studies work on adversarial detection.

• Few studies for defense.

AdvIT: Adversarial Frames Identifier Based on Temporal Consistency In Videos

- Compare the output of the target frame and its corresponding pseudo frame.
- The pseudo frame is much less affected by adversary.
- No training.

Chaowei Xiao, Ruizhi Deng, Bo Li, Taesung Lee, Jinfeng Yi, Ian Molloy, Mingyan Liu, and Dawn Song. AdvIT: Adversarial Frames Identifier Based on Temporal Consistency In Videos. ICCV 2019.

AdvIT: Adversarial Frames Identifier Based on Temporal Consistency In Videos

- Temporal consistency test
- Semantic segmentation: Pixel-wise accuracy
- Object detection: mIoU of bounding boxes
- Human pose estimation: MSE

Chaowei Xiao, Ruizhi Deng, Bo Li, Taesung Lee, Jinfeng Yi, Ian Molloy, Mingyan Liu, and Dawn Song. AdvIT: Adversarial Frames Identifier Based on Temporal Consistency In Videos. ICCV 2019.

Identifying and Resisting Adversarial Videos Using Temporal Consistency

- Use temporal consistency to detect adversarial frames.
- Spatial Defense: Imagebased defense
- Temporal Defense: Replace adversarial frames with pseudo frames

Outline

• Image-based Adversarial Attacks in Video

- Attacks
- Image-based Defenses
- Video-specific Defenses

• Video-specific Adversarial Attacks

Conclusion

Video-specific Defenses

• Use video's unique properties (mostly temporal information) to generate adversarial videos.

 Video has higher dimensionality, so the search space of adversary is larger -> more possible types of adversarial examples

Appending Adversarial Frames

Zhikai Chen, Lingxi Xie, Shanmin Pang, Yong He, and Qi Tian. Appending Adversarial Frames for Universal Video Attack. WACV 2021.

- Spatial patternless temporal perturbation, i.e., the perturbation is a constant offset applied to the entire frame.
- Undetectable by image adversarial attack detector.

Roi Pony, Itay Naeh, and Shie Mannor. Over-the-Air Adversarial Flickering Attacks against Video Recognition Networks. 2020.

Objective function (universal targeted attack)

$$\underset{\delta}{\operatorname{argmin}} \lambda \sum_{j} \beta_{j} D_{j}(\delta) + \frac{1}{N} \sum_{n=1}^{N} \ell(F_{\theta}(X_{n} + \delta), t_{n})$$

- Fo is classifier
- *N* is total number of training videos
- *t* is targeted class
- *D_j* is regularization term
- *β_j* weights the relative importance of each regularization term
- λ weights the relative importance of the regularization terms

• Thickness regularization: Force the perturbation to be small.

 $D_1(\delta) = \frac{1}{3T} \|\delta\|_2^2.$

• Roughness regularization: Force the perturbation to be smooth. $D_2(\delta) = D_2^1(\delta) + D_2^2(\delta)$

$$D_2^1(\delta) = \frac{1}{3} \sum_{c \in \{r,g,b\}} \frac{1}{T-1} \sum_{i=2} \left\| \delta_i^c - \delta_{i-1}^c \right\|_2^2$$

Control the difference between two consecutive frame perturbations

$$D_2^2(\delta) = \frac{1}{3} \sum_{c \in \{r,g,b\}} \frac{1}{T-2} \sum_{i=2}^{T-1} \left\| \delta_{i+1}^c - 2\delta_i^c + \delta_{i-1}^c \right\|_2^2$$

Control the trend of perturbation

• Using D1 only

• Using D2 only

Conclusion

• Image-based adversarial attack and defense methods can generalize to video.

• With video-specific properties, there exist more possible types of adversarial videos.

• Video-specific defense is still an open problem.

Thanks for your attention