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Recent Research

• Use Multimodal LLMs to solve computer vision problems

• Augment vehicles’ autonomous functions 
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MLLM for
Affective Reasoning

MLLM for
Action Anticipation

MLLM for
Anomaly Detection
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MLLM for Video Anomaly Detection
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• One of the first reasoning methods for VAD
• => Explain why normal/anomaly

• One of the first few-shot prompting methods for VAD
• => Fast adaption to different definitions of “anomaly” for different applications



Problem Statement

• A VAD model is exclusively trained with normal data and is asked to 
identify whether a query example is normal or anomalous.

• The definition of “anomaly” depends on different context and 
downstream applications.
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Our Goal

• Suppose that we only have a few “normal” data for our 
specific application, and it’s costly to collect “anomaly” data.

• Can we develop a VAD model for our specific application 
(specific definition of “normal” & “anomaly”) and explain 
the detection results?
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Method

• Traditional VAD: Full-shot training. Only output anomaly score.

• Ask LLM directly: The implicit knowledge pre-trained in LLMs may not 
align with specific VAD needs (e.g., “skateboarding”).
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Method

• Induction (derive rules): 
Use the few available 
normal data as 
references to derive a 
set of rules. Prompting
method without model 
weight training.

• Deduction (inference): 
Perform VAD and 
explain detection 
results according to the 
induced rules.
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Results

• Induction: CogVLM-17B & GPT-4. Deduction: CogVLM-17B & Mistral-7B
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Two most challenging
datasets

Compare with LLM-based methods

Compare with state-of-the-art 
traditional VAD models



MLLM for Video Affective Reasoning
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• One of the first methods for VAR, i.e., predicting and reasoning
viewers’ emotional reactions to a video

• Propose spatiotemporal stimuli-aware mechanisms and create VAR 
visual instruction data



Our Goal

• VAR aims to predict and explain viewers’ emotional responses 
to a video.

• What are the emotional stimuli?  
• Capturing stimuli could reduce redundancy and improve affective 

understanding.

• => Propose spatiotemporal stimuli-aware mechanisms

• Why this prediction?  
• Interpretability is crucial for model analysis and earning public trust.

• => Create VAR visual instruction data for affective training
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Method
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• Let’s start from an example video

What we see:

What models see:



Method

• Traditional models 
and generic MLLMs 
often overlook 
emotional stimuli.

• Our method has 
stimuli awareness.
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Spatiotemporal Stimuli-aware Mechanisms

• Event-driven frame selection: Frame-level awareness

• Emotion-triggered tube selection: Token-level awareness
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Affective Training

• Create VAR visual instruction data

• Phase I: Align affective visual 
information with LLM space.

• Phase II: VAR visual instruction 
tuning for affective reasoning.
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Results

• MLLM backbone: CLIP ViT + Llama2-7b
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MLLM for Action Anticipation
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• One of the first MLLM-based method for action anticipation

• Propose Plausible Action Sequence Learning Loss and Long-Horizon 
Action Repetition Loss for plausible and diverse predictions



Our Goal

• Action anticipation aims to 
predict future actions given 
previous actions.

• Plausible predictions by 
Plausible Action Sequence 
Learning Loss

• Diverse predictions by 
Long-Horizon Action 
Repetition Loss
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Method
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Results

• MLLM backbone: CLIP ViT + Llama2-7b

• Dataset: EPIC-Kitchens-100
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https://shaoyuanlo.github.io/
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