

Multimodal LLMs for Driving Safety Applications

羅紹元 (Shao-Yuan Lo) 本田美國研究院 (HRI-US) AI科學家

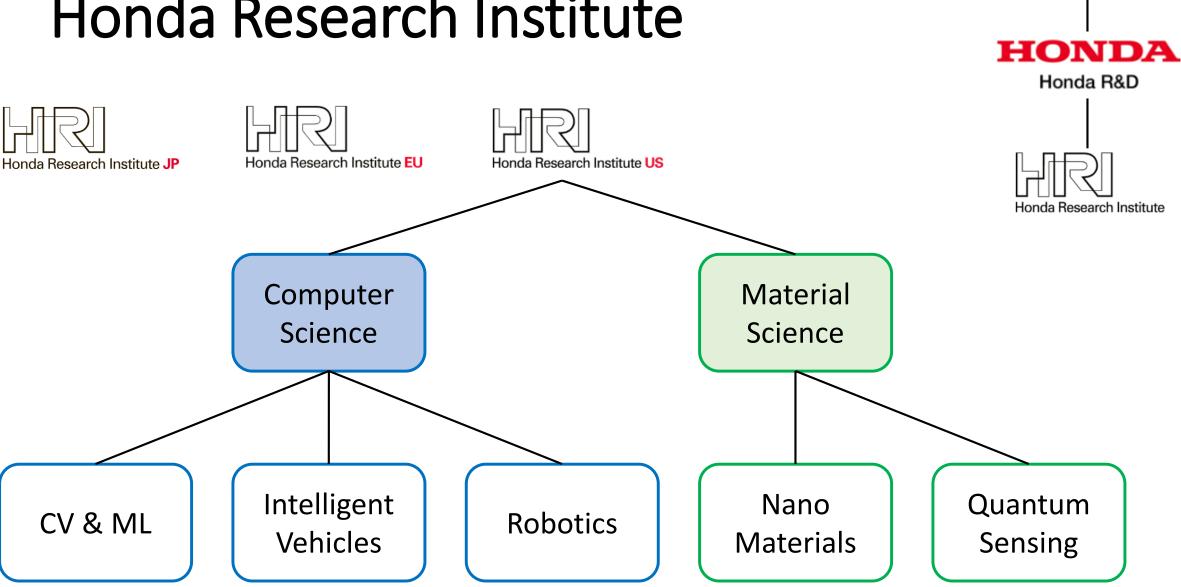
9/19/2024 吉林大學

About Me

- Research Scientist @ Honda Research Institute USA San Jose, CA (2023 - Present)
- Research Intern @ Amazon
 Seattle, WA (Summer 2021 & 2022)

- PhD in ECE @ Johns Hopkins University Baltimore, MD (2019 2023)
- 國立交通大學電子研究所 碩士 (2017 2019)
- 國立交通大學電機資訊學士班 學士 (2013 2017)

Honda Research Institute



HONDA

Recent Research

- Use Multimodal LLMs to solve computer vision problems
- Augment vehicles' autonomous functions

MLLM for Anomaly Detection

[YLDCL, ECCV'24]

MLLM for Affective Reasoning

[GSZCL, submitted to IJCV]

MLLM for Action Anticipation

[MALL, CVPR'24]

MLLM for Video Anomaly Detection

- One of the first reasoning methods for VAD
 - => Explain why normal/anomaly
- One of the first few-shot prompting methods for VAD
 - => Fast adaption to different definitions of "anomaly" for different applications

Follow the Rules: Reasoning for Video Anomaly Detection with Large Language Models

```
Yuchen Yang<sup>1*</sup>, Kwonjoon Lee<sup>2</sup>, Behzad Dariush<sup>2</sup>, Yinzhi Cao<sup>1</sup>, and Shao-Yuan Lo<sup>2</sup>
```

Problem Statement

- A VAD model is exclusively trained with **normal** data and is asked to identify whether a query example is **normal** or **anomalous**.
- The definition of "anomaly" depends on different context and downstream applications.

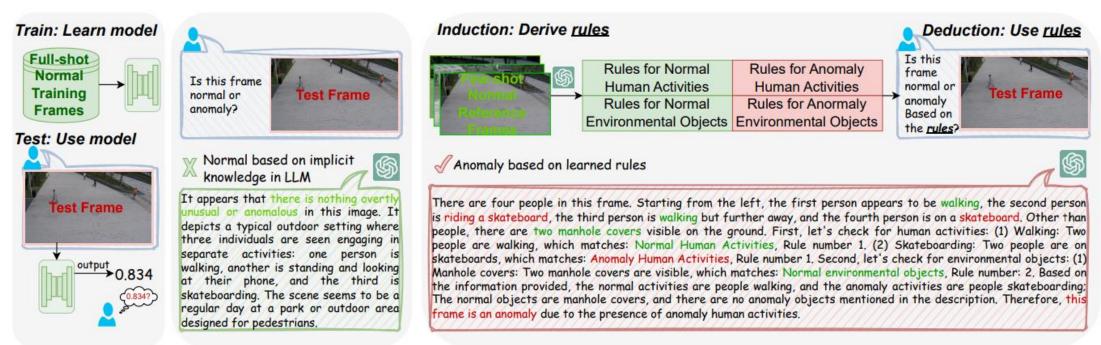
person jogging versus person running outside a bank.

Our Goal

 Suppose that we only have a few "normal" data for our specific application, and it's costly to collect "anomaly" data.

 Can we develop a VAD model for our specific application (specific definition of "normal" & "anomaly") and explain the detection results?

- Traditional VAD: Full-shot training. Only output anomaly score.
- **Ask LLM directly**: The implicit knowledge pre-trained in LLMs may not align with specific VAD needs (e.g., "skateboarding").

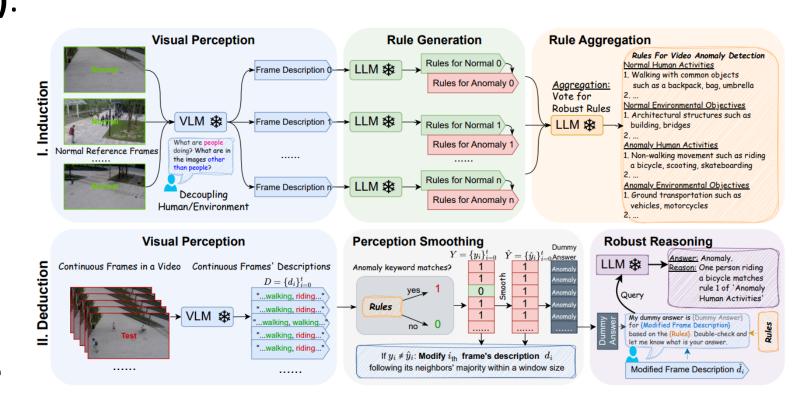


a) Traditional VAD

b) Ask LLM directly

c) Ask LLM with the rules learned in induction stage (Ours)

- Induction (derive rules):
 Use the few available
 normal data as
 references to derive a
 set of rules. Prompting
 method without model
 weight training.
- Deduction (inference):
 Perform VAD and
 explain detection
 results according to the induced rules.



Results

• Induction: CogVLM-17B & GPT-4. Deduction: CogVLM-17B & Mistral-7B

Method	Accuracy	Precision	Recall
Ask LLM Directly	52.1	97.1	6.2
Ask LLM with Elhafsi et al. [12]	58.4	97.9	15.2
Ask Video-based LLM Directly	54.7	85.4	8.5
AnomalyRuler	81.8	90.2	64.3

Method	w. Perception Errors				w/o. Perception Errors			
Wethod	RR	RW	WR	WW	RR	RW	WR	WW
Ask GPT-4 Directly	57	4	15	24	73	3	0	24
Ask GPT-4 with Elhafsi et al. [12]	60	3	15	22	76	2	0	22
Ask GPT-4V with Cao et al. [8]	74	2	7	17	81	2	0	17
AnomalyRuler	83	1	15	1	99	0	0	1

Compare with LLM-based methods

Method	Venue	Image Only	Training	Ped2	Ave	ShT	UB
MNAD [36]	CVPR-20	✓	✓	97.0	88.5	70.5	-
rGAN [29]	ECCV-20	✓	✓	96.2	85.8	77.9	-
CDAE [9]	ECCV-20	✓	✓	96.5	86.0	73.3	-
MPN [30]	CVPR-21	✓	✓	96.9	89.5	73.8	-
NGOF [50]	CVPR-21	X	✓	94.2	88.4	75.3	-
HF2 [25]	ICCV-21	X	✓	99.2	91.1	76.2	-
BAF [14]	TPAMI-21	X	✓	98.7	92.3	82.7	59.3
GCL [56]	CVPR-22	X	✓	-	-	79.6	-
S3R [53]	ECCV-22	X	✓	-	-	80.5	-
SSL [49]	ECCV-22	X	✓	99.0	92.2	84.3	-
zxVAD [3]	WACV-23	X	✓	96.9	-	71.6	-
HSC [45]	CVPR-23	X	✓	98.1	93.7	83.4	-
FPDM [54]	ICCV-23	✓	✓	-	90.1	78.6	62.7
SLM [43]	ICCV-23	✓	✓	97.6	90.9	78.8	-
STG-NF [18]	ICCV-23	X	✓	-	-	85.9	71.8
AnomalyRuler-base	-	✓	X	96.5	82.2	84.6	69.8
AnomalyRuler	-	✓	X	97.9	89.7	85.2	71.9

Compare with state-of-the-art traditional VAD models

Two most challenging datasets

MLLM for Video Affective Reasoning

- One of the first methods for VAR, i.e., predicting and reasoning viewers' emotional reactions to a video
- Propose spatiotemporal stimuli-aware mechanisms and create VAR visual instruction data

StimuVAR: Spatiotemporal Stimuli-aware Video Affective Reasoning with Multimodal Large Language Models

Yuxiang Guo^{1*†}, Faizan Siddiqui², Yang Zhao¹, Rama Chellappa^{1*}, Shao-Yuan Lo^{2*}

¹Johns Hopkins University. ²Honda Research Institute USA.

Our Goal

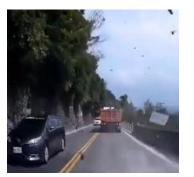
 VAR aims to predict and explain viewers' emotional responses to a video.

- What are the emotional stimuli?
 - Capturing stimuli could reduce redundancy and improve affective understanding.
 - => Propose spatiotemporal stimuli-aware mechanisms
- Why this prediction?
 - Interpretability is crucial for model analysis and earning public trust.
 - => Create VAR visual instruction data for affective training

• Let's start from an example video

What we see:

What models see:



 Traditional models and generic MLLMs often overlook emotional stimuli.

 Our method has stimuli awareness.

Uniform Sampling 12:06:09 ---- 11 ----- 14 ----- 17 ------

Traditional Method

User: What is the emotion of the viewers when they watch the video?

Answer: Boredom 6 6 6 6

StimuVAR

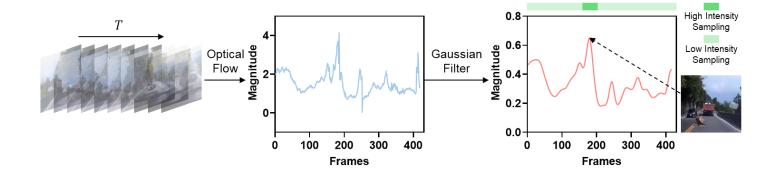
Event-Driven Frame Sampling & Emotion-triggered Tube Selection

User: What is the emotion of the viewers when they watch the video?

Answer: The viewer feels Surprise (i) because initially, it is a typical road scene with a red truck and a silver car sets the expectation for a mundane video. However, the sudden appearance of a rock, falling onto the road introduces an unexpected element. This unexpected twist in the video content is likely to evoke surprise in the viewer

Spatiotemporal Stimuli-aware Mechanisms

Event-driven frame selection: Frame-level awareness



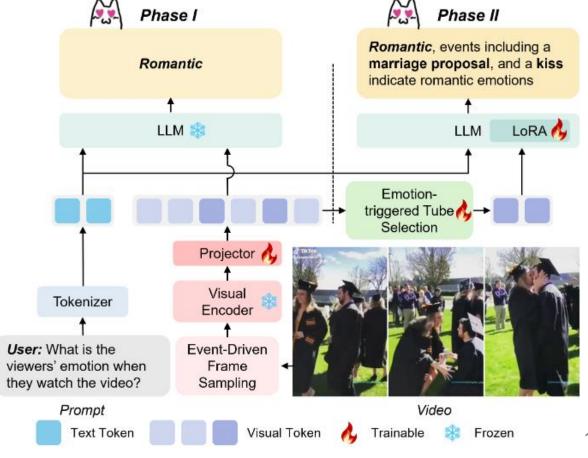
• Emotion-triggered tube selection: Token-level awareness

Affective Training

Create VAR visual instruction data

```
{"role": "system",
    "content": Given the below (QUESTION, ANSWER) pair
    examples of emotion estimation, left fill-in the
    REASONING process which derives ANSWERS from QUESTIONS
    in three sentences.},
{"role": "user",
    "content": QUESTION: These are frame descriptions from a
    video. After reading the descriptions, how people
    might emotionally feel about the content and why. Only
    provide the one most likely emotion. <Video Caption>
ANSWER: The viewer feels <Emotion>.
REASONING: Let's think of step-by-step
```

- **Phase I:** Align affective visual information with LLM space.
- **Phase II**: VAR visual instruction tuning for affective reasoning.



Results

MLLM backbone: CLIP ViT + Llama2-7b

Table 1: Quantitative comparison on the VCE dataset.

Method	Venue	Top-3	Emo-align	RR	RW	WR	ww	CLIP-S
Traditional							1	
CLIP [55]	ICML'21	28.4	-	-	-	-	-	-
Majority [13]	NeurIPS'22	35.7	-	-	-	-	-	-
R(2+1)D[56]	CVPR'18	65.6	-	-	-	-	-	-
STAM [57]	arXiv'21	66.4	-	-	-	-	-	-
VideoMAE [58]	NeurIPS'22	68.9	-	-	-	-	-	-
MM-VEMA [16]	PRCV'23	73.3	-	-	-	-	-	-
MLLM							I	
Video-LLaMA [17]	EMNLP'23	26.4	25.5	16.2	9.3	9.3	65.2	63.9
Video-LLaVA [18]	arXiv'23	25.0	31.2	17.5	7.5	13.7	61.3	70.6
Valley [19]	arXiv'23	31.3	29.4	19.2	12.1	10.2	58.5	69.4
Video-ChatGPT [20]	ACL'24	21.0	29.5	11.4	9.5	18.1	61.0	68.9
VideoChat2 [21]	CVPR'24	31.1	36.4	24.0	7.1	12.4	56.5	68.6
Chat-UniVi [22]	CVPR'24	38.6	29.5	21.0	17.6	8.5	52.1	70.2
mPLUG-Owl [23]	CVPR'24	23.6	22.1	13.8	9.7	8.3	66.5	69.3
EmoVIT [31]	CVPR'24	10.5	5.2	4.8	5.7	0.4	89.1	48.9
StimuVAR (Ours)		73.5	69.6	68.8	4.7	0.8	25.6	75.3

(A) GT: Empathic Pain

StimuVAR: The viewer feels Empathic Pain, because the description of a skateboarder performing a trick and then being involved in an accident with a bicyclist evokes a sense of empathy towards the individual's pain and potential injury. The presence of the aftermath of the accident further intensify the emotional response, leading the viewer to feel a deep sense of sympathy and distress. The contrast between the skateboarding action and the subsequent accident creates a stark emotional shift, eliciting a strong feeling of empathic pain in the viewer.

Chat-UniVi: The viewer might feel Excitement as they watch the skateboarder perform tricks and stunts. The sense of thrill and anticipation builds as the skateboarder gains speed and momentum,

and the viewer waits to see what trick will be performed next.

Video-LLaMA: The most likely emotion of the viewers is *Excitement*. There are various skateboarders performing different tricks, such as one man riding a skateboard downstairs while another man is riding a skateboard on a street. The viewers will likely be excited to see the thrilling and dynamic performances.

Video-ChatGPT: The viewer feels a sense of *Relief*, as the man in the yellow jacket is seen helping the person on the skateboard.

Video-LLaVA: The most likely emotion from the provided emotions is *Relief* because the man is helping the injured person, and the situation seems to be under control.

MLLM for Action Anticipation

- One of the first MLLM-based method for action anticipation
- Propose Plausible Action Sequence Learning Loss and Long-Horizon Action Repetition Loss for plausible and diverse predictions

Can't make an Omelette without Breaking some Eggs: Plausible Action Anticipation using Large Video-Language Models

```
Himangi Mittal<sup>1,2*</sup> Nakul Agarwal<sup>1</sup> Shao-Yuan Lo<sup>1</sup> Kwonjoon Lee<sup>1</sup>

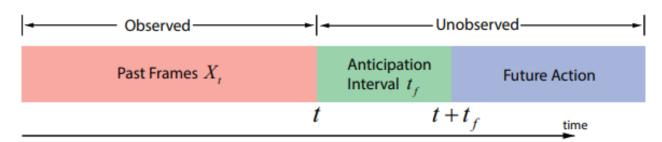
<sup>1</sup>Honda Research Institute USA

<sup>2</sup>Carnegie Mellon University
```

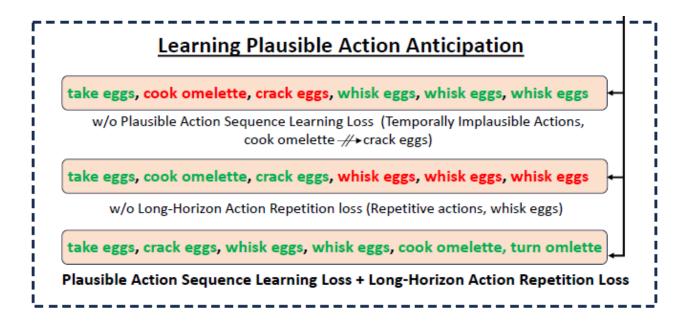
hmittal@andrew.cmu.edu {nakul_agarwal, shao-yuan_lo, kwonjoon_lee}@honda-ri.com

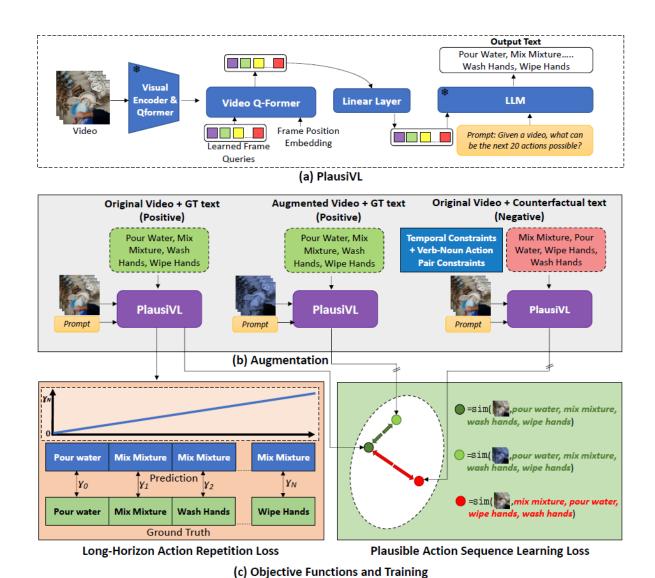
Our Goal

 Action anticipation aims to predict future actions given previous actions.



- Plausible predictions by Plausible Action Sequence Learning Loss
- Diverse predictions by Long-Horizon Action Repetition Loss





Results

• MLLM backbone: CLIP ViT + Llama2-7b

• Dataset: EPIC-Kitchens-100

	(Class-mean					
Method	Top-	·5 recall	(%) ↑				
	Verb	Noun	Action				
RU-LSTM [13]	23.20	31.40	14.70				
Temporal Aggregation [56]	27.80	30.80	14.00				
Video LLM [6]	-	-	15.40				
AFFT [73]	22.80	34.60	18.50				
AVT [25]	28.20	32.00	15.90				
MeMViT [68]	32.20	37.00	17.70				
RAFTformer [24]	33.80	37.90	19.10				
InAViT [55]	52.54	51.93	25.89				
Video LLaMA [71]	52.90	52.01	26.05				
PlausiVL	55.62	54.23	27.60				

Video

Time

Prediction: take iron, take pants, put pants, adjust pants, take iron, press pants, put iron, adjust pants, take iron, press pants, turn pants, adjust pants, take iron, press pants, put iron, adjust pants, take iron, turn pants, put iron, adjust pants

Ground Truth: take iron, press pants, hold iron, press pants, put iron, take iron, press pants, turn pants, arrange pants, take iron, press pants, adjust pants, turn pants, arrange pants, take iron, turn pants, put pants, touch pants, take pants, fold pants

https://shaoyuanlo.github.io/ sylo@jhu.edu