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Al Safety Matters!!

Al is becoming increasingly integrated into human society.

However, Al also brings considerable risks, and Al safety
research has not kept pace with its rapid advancement.

Al safety research ensure Al’s positive impact on humanity
and enables us to unlock Al’s full potential safely.



Al Safety Scope

Monitoring Alignment

Robustness

Use Al to make Foster harmonious
human society safe human-Al interactions

Make Al safe
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RO b U St nNess — + Novel attacks

[Lo & Patel, AVSS'21]
~ ) * Empirical defenses
Adversarial [Lo et al. ICIP’21] [Lo & Patel, ICIP’21]
Robustness * Generalizable defenses

\_ J [Lo & Patel, IEEE T-IP’21]

* | Defenses for less explored tasks
Robust Al __ | [Lo et al. IEEE T-PAMI'22]

(" ) * Unsupervised domain adaptation
Domain [Lo et al. IROS’22]

r———- —

| | Generalization * Source-free domain adaptation
Others | ,
I , \. Y, [Lo et al. CVPR’23]

* Adversarial defense for domain adaptation
Intersection [Lo & Patel, ACCV’22]

—

of AR & DG * Adversarial defense via domain adaptation
[Lo & Patel, AVSS’24]




IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022

Adversarially Robust One-class
Novelty Detection

Shao-Yuan Lo, Student Member, IEEE, Poojan Oza, Student Member, IEEE,
and Vishal M. Patel, Senior Member, IEEE

* We find that image classification-based methods do not work well on
the novelty detection task due to the unique property of this task.

* We propose the first adversarially robust methods for novelty detection.

* We establish a solid evaluation benchmark and comprehensive
baseline results.



Recall: Adversarial Examples

* Deep networks are vulnerable to adversarial examples.
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Recall: Adversarial Examples

 Dataset: CIFAR-10
e Network: ResNet-50
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Recall: One-class Novelty Detection

* One-class novelty detection model is trained with examples of
a particular class and is asked to identify whether a query
example belongs to the same known class.

* Example:
* Known class (normal data): 8
* Novel classes (anomalous data): 0-7 & 9 (the rest of classes)
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Recall: One-class Novelty Detection

* Most recent advances are based on the autoencoder architecture.

e Given an autoencoder that learns the distribution of the known class,
we expect that the normal data are reconstructed accurately while
the anomalous data are not.

Low error
» Normal

High error
» Anomalous

Training data Test data Reconstructions
(expected)



Attacking One-class Novelty Detection

* How to generate adversarial examples against a novelty detector?
* If a test example is normal, maximize the reconstruction error.
* If a test example is anomalous, minimize the reconstruction error.

High error
» Anomalous

C
P
data .

~ - E

~ Normal

Low error
> Normal

Training data Adversarial examples Reconstructions

(expected)
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Goal: Adversarially Robust Novelty Detection

* Novelty detectors are vulnerable to adversarial attacks.

» Adversarially robust method specifically designed for
novelty detectors is needed.

* A new research problem.



Observation: Generalizability

e Unique property: Preference for poor generalization of
reconstruction ability.

* However, autoencoders have good generalizability.

. ?

Training data Test data Reconstructions



Observation: Feature Denoising

* Adversarial perturbations can be removed in the feature domain.

Adversarial Examples Before denoising After denoising

N _).

'.x

Denoising

Operations

N _>.

l [Xie et al. CVPR'19]
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Method

* Observations: Generalizability and Feature
Denoising.

!

* Assumption: One can largely manipulate
the latent space of a novelty detector to
remove adversaries to a great extent, and
this would not hurt the model capacity
but helps if in a proper way.

!

* Solution: Learning principal latent space.
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Method

* Vector-PCA performs PCA on the vector dimension.

 Spatial-PCA performs PCA on the spatial dimension.
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Method

* Vector-PCA replaces the [ (y yw o
perturbed latent vectors § N )

Principal
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Results

e Evaluation metric: mean of AUROC

* PrincipalsS is effective on 5 datasets against 6 attacks for 7 novelty
detection methods.

Dataset | Defense | Clean | FGSM [11] PGD[27] MI-FGSM [56]  MultAdv [©7]  AF[2%] | Black-box [17] | Average
| No Defense | 0.964 | 0.350 0.051 0.022 0.170 0.014 | 0.790 | 0.337
PGD-AT [ 0.961 0.604 0.357 0.369 0.444 0.155 0.691 0.512
FD 0.963 0.612 0.366 0.379 0.453 0.142 0.700 0.516
MNIST SAT [ 0.947 0.527 0.295 0.306 0.370 0.142 0.652 0.463
[48] RotNet-AT [ 0.967 0.598 0.333 0.333 0424 0.101 0.695 0.493
SOAP 22 0.940 0.686 0.504 0.506 0.433 0.088 0.863 0.574
APAE 0.925 0.428 0.104 0.105 0.251 0.022 0.730 0.366
PrincipalS (ours) | 0.973 0.812 0.706 0.707 0.725 0.636 0.866 0.775
| No Defense | 0.523 | 0.204 0.034 0.038 0.006 0.000 | 0.220 | 0.146
PGD-AT [ 0.527 0.217 0.168 0.154 0.100 0.000 0.221 0.198
FD 0.528 0.226 0.189 0.181 0.132 0.002 0.229 0.212
SHTech SAT [ 0.529 0.184 0.110 0.092 0.040 0.000 0.199 0.165
[52] RotNet-AT [ 0.516 0.220 0.163 0.158 0.113 0.000 0.229 0.200
SOAP |22 0.432 0.024 0.002 0.000 0.002 0.181 0.202 0.120
APAE 0.510 0.215 0.048 0.050 0.011 0.000 0.207 0.149
Principal§S (ours 0.498 0.274 0.223 0.217 0.175 0.051 0.308 0.249




Analysis

* PrincipalS reconstructs every input example to the known class (digit 2).

Normal data Anomalous data

AF examples ERt==

Reconstructions
of No Defense

Reconstructions
of PrincipalS

(b) AF attack



Analysis

* (a) No Defense under clean data (b) No Defense under PGD attack
(c) PGD-AT under PGD attack (d) PrincipalS under PGD attack

* PrincipalS enlarges the reconstruction errors of anomalous data to a
great extent.
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Monitoring

* |dentify and forecast malicious scenarios

* Leveraging Al to enhance the safety of human society

/

\_

Multimodal LLMs for
Anomaly Detection

\

J

* Reasoning for AD
[YLDCL, ECCV’24]

e Unified multimodal AD
[XLPD, 2024]

-

\_

Multimodal LLMs for
Behavior Forecast

~

J

* Short-term forecast
[GALLJ, CVPR’24]

* Long-term forecast
[MALL, CVPR’24]
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Follow the Rules: Reasoning for Video Anomaly
Detection with Large Language Models

Yuchen Yang'*, Kwonjoon Lee”, Behzad Dariush?, Yinzhi Cao', and
Shao-Yuan Lo?

! Johns Hopkins University
{yc.yang, yinzhi.cao}@jhu.edu
2 Honda Research Institute USA
{kwonjoon_lee, bdariush, shao-yuan_lo}@honda-ri.com

* One of the first reasoning methods for VAD
e => Explain why normal/anomaly

* One of the first few-shot prompting methods for VAD
e => Fast adaption to different definitions of “anomaly” for different applications

23



Problem Statement

A VAD model is exclusively trained with normal data and is asked to
identify whether a query example is normal or anomalous.

* The definition of “anomaly” depends on different context and
downstream applications.

person jogging versus person running outside a bank.

Credit: https://drive.google.com/file/d/1bP6BbfREhpZjokyjYSE82c_Jmnxpmlsn/view
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Our Goal

|II

e Suppose that we only have a few “normal” data for our
specific application, and it’s costly to collect “anomaly” data.

e Can we develop a VAD model for our specific application
(specific definition of “normal” & “anomaly”) and explain
the detection results?



Method

* Traditional VAD: Full-shot training. Only output anomaly score.

* Ask LLM directly: The implicit knowledge pre-trained in LLMs may not
align with specific VAD needs (e.g., “skateboarding”).

Train: Learn model g

S 5]
(Fullshot)
‘Normal™ > ’ H Is this frame
Training normal or
. Frames anomaly?

Test: Use model

& 77 Normal based on implicit

“* knowledge in LLM

It appears that there is nothing overtly
unusual or anomalous in this image. It
depicts a typical outdoor setting where
three individuals are seen engaging in
separate activities: one person is

[ output walking, another is standing and looking
— >0834 |t ireir phone, and the third is

R
H | H | skateboarding. The scene seems to be a
| 1 . \

=)

regular day at a park or outdoor area
designed for pedestrians.

a) Traditional VAD b) Ask LLM directly

Induction: Derive rules ¢ Deduction: Use rules
=)
Is thi
Rules for Normal Rules for Anomaly fmmf
Human Activities Human Activities _ normal or
Rules for Normal Rules for Anormaly ;?;mgly
Environmental Objects | Environmental Objects Th: !onp

V4 Anomaly based on learned rules

There are four people in this frame. Starting from the left, the first person appears to be walking, the second person
is riding a skateboard, the third person is walking but further away, and the fourth person is on a skateboard. Other than
people, there are two manhole covers visible on the ground. First, let's check for human activities: (1) Walking: Two
eople are walking, which matches: Normal Human Activities, Rule number 1. (2) Skateboarding: Two people are o
gkafeboards, which matches: Anomaly Human Activities, Rule number 1, Second, let's check for environmental objects: (1
Manhole covers: Two manhole covers are visible, which matches: Normal environmental objects, Rule number: 2. Based o
the information provided, the normal activities are people walking, and the anomaly activities are people skateboarding
The normal objects are manhole covers, and there are no anomaly objects mentioned in the description. Therefore, thi

frame is an anomaly due to the presence of anomaly human activities.

b

c¢) Ask LLM with the rules learned in induction stage (Ours)

26



Method

* Induction (derive rules):
Use the few available
normal data as
references to derive a
set of rules. Prompting
method without model
weight training.

* Deduction (inference):
Perform VAD and
explain detection
results according to the
induced rules.

l. Induction

Il. Deduction

Visual Perception

Frame Descripliun:l}——- LLM ﬁ: —>

Rule Generation

Rules for Normal 0

Rules for Anomaly 0

VLM %
L& sl Sy R T What are people
MNormal Reference Frames| = doing? What are in

soooes the images other
than peaple?

M
Decoupling
Human/Environment

Visual Perception

Continuous Frames ina Video  Continuous Frames' Descriptions

Frame Description n—> LLM *

> VLM &>

| "...walking, riding..." )

Frame Descnphon ‘[:——i- LLM * —> Rules for Normal 1

Rules forAnomaIy 1

Rules for Normal n

Rules forAnomaIy n

Perception Smoothing

"...walking, riding..."t::

Y= {?h}{: Y=
Anomaly keyword matches? 1
D= {4}, 1135
: *__walking, riding. “ l% L 0 L%
.walking, ridin “Y‘_‘\ —> Rules > 1 —>
walking, walkin j": \I;B“ 0

Rule Aggregation

Aggregation:

Vote for

Rules For Video Anomaly Detection
Nermal Human Activities
1. Walking with common objects

such as a backpack, bag, umbrella
2

Robust Rules Normal Environmental Objectives

1. Architectural structures such as

LLM 3% —> building, bridges
2

If y; # §;: Modify iy, frame's description d;
______ following its neighbors' majority within a window size

Anomaly Human Activities

1. Non-walking movement such as riding
a bicycle, scooting, skateboarding

27

Ancmaly Environmental Objectives

1. Ground transportation such as
vehicles, motorcycles

Robust Reasomng

e ——— Y
Answer: Anomaly,

Reason: One person riding

a bicycle matches

rule 1 of "Anomaly

Human Activities’

>~L My dummy answer is [Dummy Answer}
g . for {Modified mee Dzscr‘ p1|on} §
:, F2 | based on the {Rules]. Double-check and 3

(al=d | let me know wh.cn is yuur answer,
A

modiﬁad Frame Description d;
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Results

* Induction: CogVLM-17B & GPT-4. Deduction: CogVLM-17B & Mistral-7B

Method | Accuracy Precision Recall
Ask LLM Directly 52.1 97.1 6.2
Ask LLM with Elhafsi et al. [12] 58.4 97.9 15.2
Ask Video-based LLM Directly 54.7 85.4 8.5
AnomalyRuler | 81.8 90.2 64.3
w. Perception Errors w/o. Perception Errors
Method RR KW WR WW | RR KW WR WW
Ask GPT-4 Directly 57 4 15 24 73 3 0 24
Ask GPT-4 with Elhafsi et al. [12] 60 3 15 22 76 2 0 22
Ask GPT-4V with Cao et al. [5] 74 2 7 17 81 2 0 17
AnomalyRuler 83 1 15 1 99 0 0 1

Compare with LLM-based methods

Method Venue | Image Only | Training | Ped2 | Ave | ShT | UB
MNAD [36] CVPR-20 v v 97.0 88.5 70.5

rGAN [29] ECCV-20 v v 96.2 85.8 77.9

CDAE [Y] ECCV-20 v v 96.5 86.0 73.3

MPN [30] CVPR-21 v v 96.9 89.5 73.8

NGOF [50] CVPR-21 X v 94.2 88.4 75.3

HF2 |25] ICCv-21 X v 99.2 91.1 76.2 -
BAF [11] TPAMI-21 X v 98.7 92.3 82.7 59.3
GCL [56] CVPR-22 X v - - 79.6 -
S3R 53] ECCV-22 X v - - 80.5

SSL [19] ECCV-22 X v 99.0 92.2 | 84.3

zxVAD [J] WACV-23 X v 96.9 - 71.6

HSC [17] CVPR-23 X v 98.1 93.7 83.4 -
FPDM [54] ICCV-23 v v - 90.1 78.6 62.7
SLM [13] ICCV-23 v v 97.6 90.9 78.8 -
STG-NF [15] ICCV-23 X v - - 85.9 | 71.8
AnomalyRuler-base | - v X 96.5 82.2 84.6 69.8
AnomalyRuler - v X 97.9 890.7 85.2 71.9

Compare with state-of-the-art

traditional VAD models

Two most challenging
datasets

28



Alignment

* Ensure Al operate in ways that align with human values and intentions

* Foster harmonious human-Al interactions

4 )
Multimodal LLMs for

Affective Computing

\_ J

[GSZCL, 2024]

-

\_

Scaling Multimodal
Theory-of-Mind

~

J

[ZHLAOHL, 2024]

/

\_

Data-Efficient Visual
Instruction Tuning

\

J

[SSPL, 2024]
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Scaling Multimodal Theory-of-Mind with Weak-to-Strong

Bayesian Reasoning
Chunhui Zhang, Sean Dae Houlihan, Kwonjoon Lee, Nakul Agarwal, Zhongyu Ouyang, Soroush Vosoughi, Shao-Yuan Lo ®

* An analysis-style paper for Multimodal Theory-of-Mind (MMToM),
a completely new topic.

 Scaling MMToM on larger language models (LMs) without increasing
training costs.

30



What is Theory of Mind?

[He et al. EMNLP-Findings’23]

o Theory of Mind (TOM) is the ab|||ty €) The milkis on the table € sally exited the room

to understand other people’s ~ e - = - a = =
mental states, such as thoughts, = o &2 [l T — ’
emotions, intentions, and beliefs. © Ametronsferedthe @) lex eited the oom, then

Alex  Anne

* Machine ToM aims to replicate this - A ;If";- — =
human’s innate ability in Al agents. e N

©® outside the room, the three interacted with each other

|’

| Sally secretl
| (Alex lied to all) (Sally Y
I

|

|

|

The milk is in Alex Anne  Sally told {a.n.?e)
i The milk is on
the fridge! ™ "N ™~
| the table!
(] [ ¢

S S S S T T ———

Oth Where is the milk?
1st Where does Anne think the milk is?

THEY BUNT\QK“0W THAT WE 2nd Where does Sally think Anne thinks the milk is?
KNOW THEY KNOW WE KNOW. 3rd| Where does Alex think Sally thinks Anne thinks the milk is?
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MMToM, a New Topic

MMToM-QA: Multimodal Theory of Mind « However, MMToM training is

Question Answering expensive, e.g., 12 GPU hours
Chuanyang Jin', Yutong Wu2, Jing Cao?, Jiannan Xiang#, fOf Lla ma 2'7 B .

Yen-Ling Kuo®, Zhiting Hu#, Tomer Ullman2, Antonio Torralba3, Joshua Tenenbaums3, Tianmin Shu®

INYU, 2Harvard, 3MIT, UCSD, SUVA, ¢JHU
ACL 2024

Outstanding Paper Award * How can we efficiently scale
MMToM on larger LMs, e.g.,
Llama3.1-405B7

VIDEO INPUT

TEXT INPUT

What's inside the apartment: ... The kitchen is equipped with a microwave, eight cabinets, ... Inside the microwave, there is a
cupcake. There is a wine glass and an apple on one of the kitchen tables. There are water glasses, a bottle wine, a condiment bottle,
and a bag of chips in inside the cabinets. ...

Actions taken by Emily: Emily is initially in the bathroom. She then walks to the kitchen, goes to the sixth cabinet, opens it,
subsequently closes it, and then goes towards the fourth cabinet.

QUESTION

Which one of the following statements is more likely to be true?

(a) Emily has been trying to get a cupcake. «" (b) Emily has been trying to get a wine glass. 3¢ 32




Model Behaviors

Rooms Furnitures

) Ba Se Sm a I I LM VS ’ ®m base small LM = post-trained small ®m base small LM = post-trained small LM = base large LM
POSt-trainEd Small LM VS. . base large LM 125

1.00

Base Large LM 100 m

= ol ol ol L

(\\é’é\ & < _,@00 .C,C""’“ 6,0(\ g ,ﬁt\e ‘dfél ‘o*"‘@le I ot »ga“ o
* 3 levels of concept & & F T Tl Gt T T
. ltems m base small LM m post-trained small LM = base large LM
granularity: rooms, s
furniture, and items 1.00
0.75
0.50
0.25
0.00
P-Qd\ D\L ‘\\Q% 6\‘5‘60 \3& - 5‘6\6\0 Cv\'a%% \i‘\‘o '35%
‘(\ \x\\%\g’
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Model Behaviors

* Post-trained Small LM is better aligned with requirements for
specific ToM scenarios.

* Base Large LM has better general world knowledge and reasoning.

* Transfer the post-trained alignment from Small LM to Large LM.
* Adapt Large LM’s ToM behaviors by training Small LM only.

Logltssmall aligned )

Logits). e al; = Logits X (
ge aligned B1lS]arge I :
Ogltssmall base



Results

* Dataset: MMToM-QA. Metric: Accuracy.

S | con fig belief inference goal inference Al
] 1.1 1.2 1.3 avg. 2.1 2.2 2.3 24 avg.
8B-zero-shot 88.00 72.00 91.00 83.67 | 65.33 62.67 22.67 54.67 51.33 | 65.19
— | 8B-post-trained  90.00 71.00 93.00 84.67 | 69.33 72.00 62.67 72.00 69.00 | 75.71
& | 70B-zero-shot 85.00 63.00 93.00 80.33 | 72.00 76.00 16.00 61.33 56.33 | 66.62
g 70B-post-trained 91.00 69.00 95.00 85.00 | 69.33 80.00 29.33 69.33 62.00 | 71.86
3 | 405B-zero-shot  86.00 70.00 90.00 82.00 | 73.33 78.67 21.33 66.67 60.00 | 69.43
70B-ours 90.00 74.00 93.00 85.67 | 74.67 77.33 70.67 76.00 74.67 | 79.38
405SB-ours 92.00 76.00 93.00 87.00 | 73.33 80.00 76.00 78.67 77.00 | 81.29
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Future Research

\

( N [ N [ N\
Robustness Monitoring Alignment
. J U J U J
Adversarial Domain Anomaly Behavior Theory of Learning
Robustness Generalization Detection Forecast Mind Alignment
[LOP, T-PAMI'22] [LOCGP, CVPR'23] [YLDCL, ECCV'24] [GALLJ, CVPR'24] [ZHLAOHL, 2024] [GSZCL, 2024]
[LP, T-IP'21] [LWTZPK, IROS"22] [XLPD, 2024] [MALL, CVPR’24] [SSPL, 2024]
[LP’ ICIP’Z]'] \ J \\ J \U J \\ J \\ J
[LVP, ICIP’21]
[LP, ACCV’22] . .
(LP, AVSS'24] Model Level Digital Models
[LP, AVSS’'21]

¥

System Level World Models

‘ Current Research
Future Research
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