

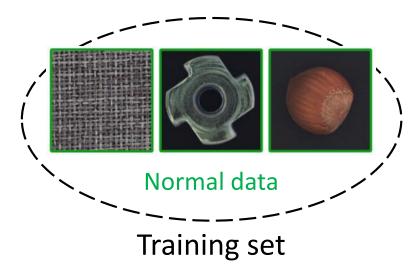
Anomaly Detection in the Era of Multimodal Large Language Models

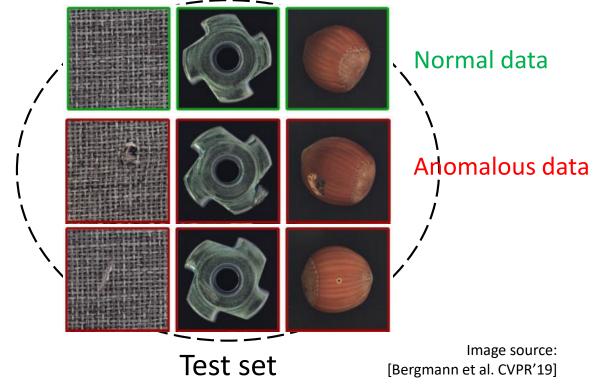
Shao-Yuan Lo

Research Scientist @ Honda Research Institute USA 3/10/2025 @ UC Riverside

About Me

- Research Scientist @ Honda Research Institute USA San Jose, CA (2023 - Present)
- Research Intern @ Amazon
 Seattle, WA (Summer 2021 & 2022)
- PhD in ECE @ Johns Hopkins University Baltimore, MD (2019 2023)
- MS in EE @ National Chiao Tung University Taiwan (2017 - 2019)
- BS in EECS @ National Chiao Tung University Taiwan (2013 2017)

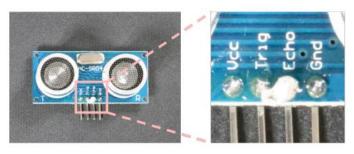




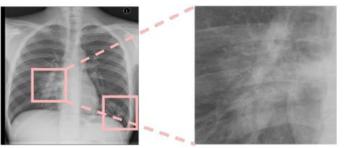
What is Anomaly Detection?

- **Problem definition**: An AD model is exclusively trained with **normal** data and is asked to identify whether a query example is **normal** or **anomalous**.
- Motivation: Anomalies are often rare and long-tailed, so they are costly to collect.
- Example:
 - Normal data: Flawless objects
 - Anomalous data: Defects

Visual Anomaly Detection: Images and Videos


- Visual AD is a long-established problem in computer vision.
- Given its practical significance, AD has been widely deployed in various applications.

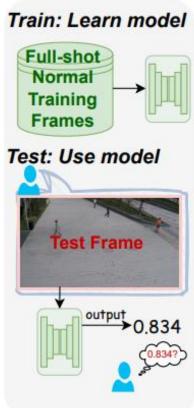
Video Anomaly Detection (VAD)



Security surveillance

Image Anomaly Detection (IAD)

Industrial image inspection


Medical image diagnosis

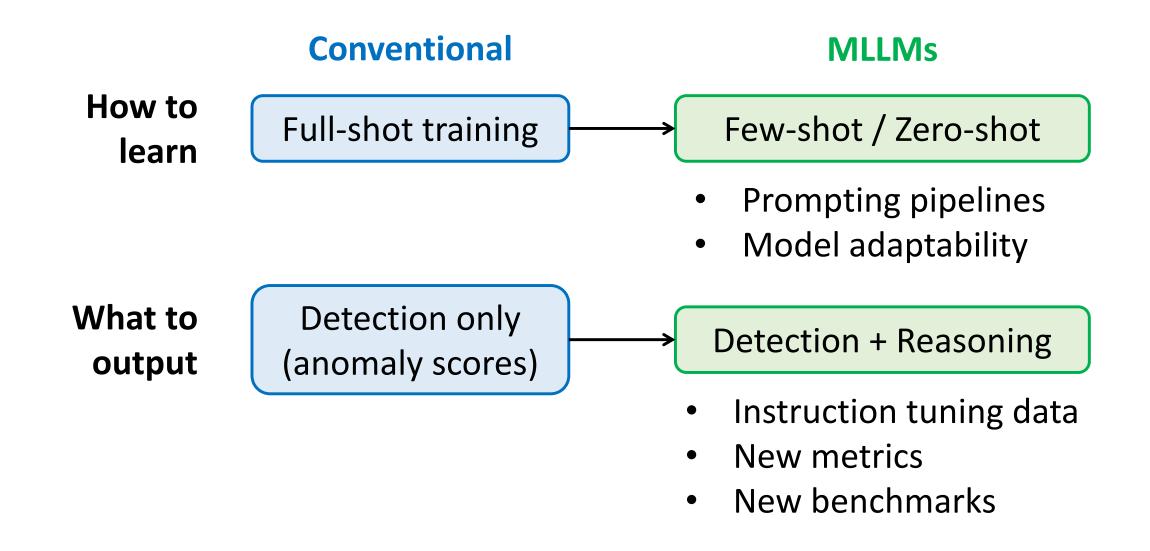
Conventional Learning-based AD Approaches

 Full-shot training: An AD model is trained by a large amount of normal data to learn normal patterns

Output format: Anomaly scores -> Thresholding

Metrics: AUROC (area under ROC curve)

The Era of Multimodal Large Language Models

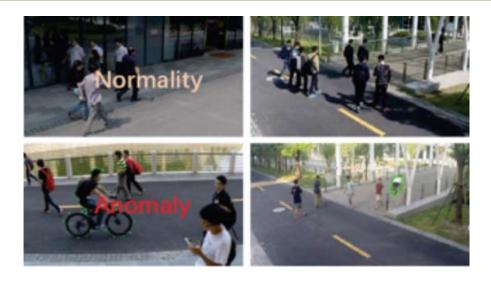


How can AD benefit from MLLMs?

What breakthroughs can MLLMs bring to this long-established vision problem?

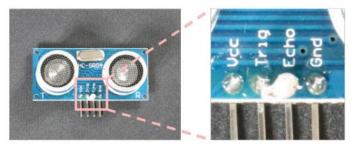
Remain underexplored!

Anomaly Detection in the Era of MLLMs

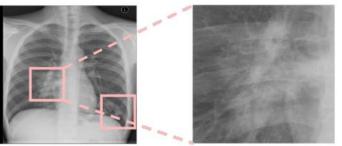


Anomaly Detection in the Era of MLLMs

ECCV 2024


CVPR 2025

Video Anomaly Detection (VAD)



Security surveillance

Image Anomaly Detection (IAD)

Industrial image inspection

Medical image diagnosis

Follow the Rules: Reasoning for Video Anomaly Detection with Large Language Models

Yuchen Yang¹[⋆], Kwonjoon Lee², Behzad Dariush², Yinzhi Cao¹, and Shao-Yuan Lo²

ECCV 2024

- One of the first reasoning methods for VAD
 - => Explain why normal/anomaly
- One of the first few-shot prompting methods for VAD
 - => Fast adaption to different definitions of "anomaly" for different applications

Problem Statement

- Assumption: We only have a few normal data for our specific application, and it's costly to collect anomaly data.
- Challenge: The definition of "anomaly" depends on different context and downstream applications.
- Goal: Develop a VAD model for our specific application (specific definition of "normal" & "anomaly") and explain the detection results.

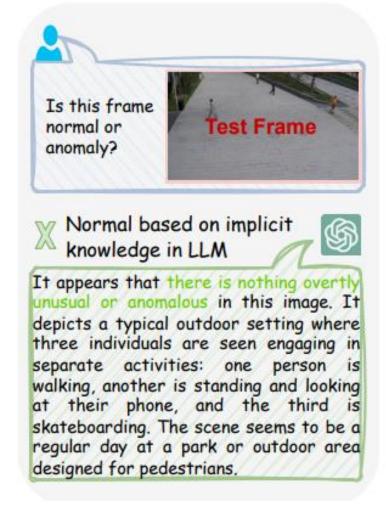
person jogging versus person running outside a bank.



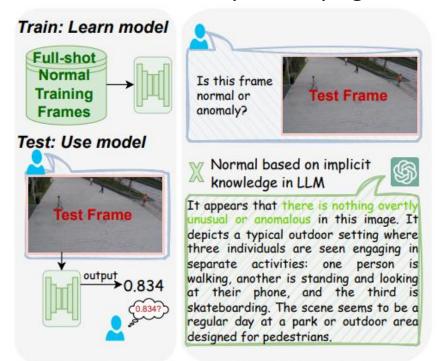
Conventional Learning-based Approaches

 Full-shot training: A VAD model is trained by a large amount of normal data to learning normal patterns

Output format: Anomaly scores -> Thresholding

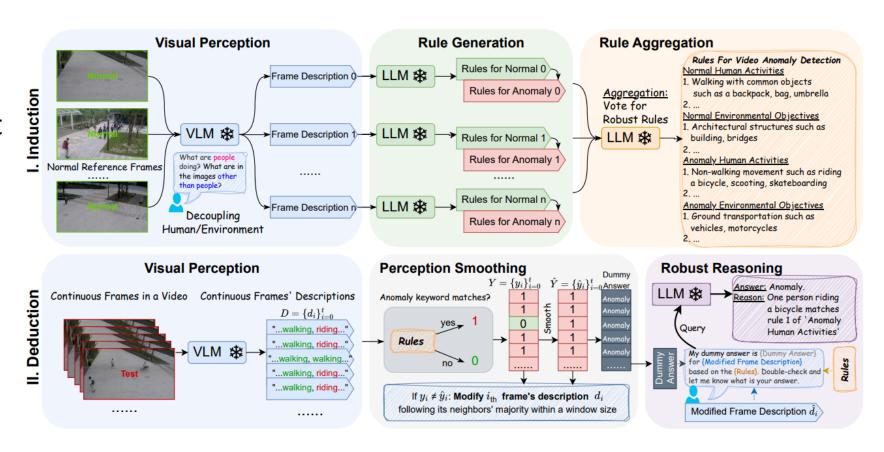

• Metrics: AUROC (area under ROC curve)

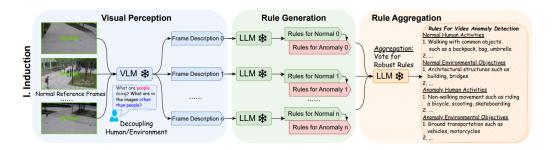
Query MLLMs Directly


 The implicit knowledge pre-trained in MLLMs may not align with specific VAD needs.

• Here GPT-4V mistakenly treats "skateboarding" as normal.

Method


- **Induction**: Learn rules from few-shot normal reference frames
 - Few-normal shot prompting (no training needed)
- Deduction: Detect anomalies based on the rules
 - Correctly identifying "skateboarding" as an anomaly



Method

- Induction (derive rules):
 Use the few available
 normal data as
 references to derive a set
 of rules. Prompting
 method without model
 weight training.
- Deduction (inference):
 Perform VAD and explain detection results according to the induced rules.

Example (Induction)

A few normal reference frames

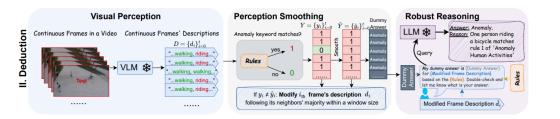
Rules for Anomaly Human Activities:

- Using any non-walking movement such as riding a bicycle or scooter, skateboarding
- 2. Running or jumping
- 3. Moving with the usual speed such as very fast or in a hurry
- 4. Person lying or bending down on the ground
- 5. Aggressive or unusual movements such as fighting or pushing
- 6. Loitering around the trash bin

Rules for Anomaly Environmental Objects:

- 1. Missing, removed, or ajar manhole covers
- 2. Ground transportation such as vehicles, vans, bicycles.
- 3. Unattended bags or objects (security threat)
- 4. Unusual objects (vehicles, large unattended luggage, etc.)
- 5. Unauthorized posters or signs

Rules for Normal Human Activities:


- 1. Walking alone or with another person
- 2. Standing and using a mobile device
- 3. Walking on the sidewalk
- 4. Walking towards or away from a building
- 5. Entering a building
- 6. Standing near a trash bin
- 7. Waiting at traffic lights

A set of rules

Rules for Normal Environmental Objects:

- 1. Manhole covers on the ground or street
- 2. Trees along the street or Plants present
- 3. Trash bin in vicinity or placed beside the street
- 4. Posters on glass door

Example (Deduction)

Query samples

Output reasoning

 \hat{y}_i^* = The third person is riding a bicycle, which matches rule number 1 under Anomaly Human Activities.

The bicycle matches rule number 2 under Anomaly Environmental Objects.

Answer: anomaly.

- \hat{y}_j^* = The human activities present are two people walking. The rules for normal human activities include walking alone or with another person. So, the rule matching is:
 - 1. Walking alone or with another person (normal)

The environmental objects present are two manhole covers on the ground, a trash bin, and some trees and plants. So, the rules matching are:

- 1. Manhole covers on the ground or street (normal)
- 2. Trees along the street or Plants present (normal)
- 3. Trash bin in vicinity or placed beside the street (normal)

Answer: normal.

Comparison with Conventional VAD Models

• Induction: CogVLM-17B & GPT-4

• **Deduction**: CogVLM-17B & Mistral-7B

Metric: AUROC

Method	Venue	Image Only	Training	Ped2	Ave	ShT	UB
MNAD [36]	CVPR-20	✓	✓	97.0	88.5	70.5	_
rGAN [29]	ECCV-20	✓	✓	96.2	85.8	77.9	-
CDAE [9]	ECCV-20	✓	✓	96.5	86.0	73.3	-
MPN [30]	CVPR-21	✓	✓	96.9	89.5	73.8	-
NGOF [50]	CVPR-21	X	✓	94.2	88.4	75.3	-
HF2 [25]	ICCV-21	X	✓	99.2	91.1	76.2	-
BAF [14]	TPAMI-21	X	✓	98.7	92.3	82.7	59.3
GCL [56]	CVPR-22	×	✓	-	-	79.6	-
S3R [53]	ECCV-22	X	✓	-	-	80.5	-
SSL [49]	ECCV-22	X	✓	99.0	92.2	84.3	-
zxVAD [3]	WACV-23	X	✓	96.9	-	71.6	-
HSC [45]	CVPR-23	X	✓	98.1	93.7	83.4	-
FPDM [54]	ICCV-23	✓	✓	-	90.1	78.6	62.7
SLM [43]	ICCV-23	✓	✓	97.6	90.9	78.8	-
STG-NF [18]	ICCV-23	×	✓	-	-	85.9	71.8
AnomalyRuler-base	-	✓	X	96.5	82.2	84.6	69.8
AnomalyRuler	-	✓	×	97.9	89.7	85.2	71.9

Two most challenging datasets

Comparison with LLM-based Approaches

• Induction: CogVLM-17B & GPT-4

• **Deduction**: CogVLM-17B & Mistral-7B

Metrics: Accuracy/precision/recall; Doubly-right (RR/RW/WR/WW)

Method	Accuracy	Precision	Recall
Ask LLM Directly	52.1	97.1	6.2
Ask LLM with Elhafsi et al. [12]	58.4	97.9	15.2
Ask Video-based LLM Directly	54.7	85.4	8.5
AnomalyRuler	81.8	90.2	64.3

Method		Percep	tion E	rors	w/o. Perception Errors			
Method	RR	RW	WR	WW	RR	RW	WR	WW
Ask GPT-4 Directly	57	4	15	24	73	3	0	24
Ask GPT-4 with Elhafsi et al. [12]	60	3	15	22	76	2	0	22
Ask GPT-4V with Cao et al. [8]	74	2	7	17	81	2	0	17
AnomalyRuler	83	1	15	1	99	0	0	1

Towards Zero-Shot Anomaly Detection and Reasoning with Multimodal Large Language Models

Jiacong Xu^{1*} Shao-Yuan Lo² Bardia Safaei¹ Vishal M. Patel¹ Isht Dwivedi²

¹Johns Hopkins University ²Honda Research Institute USA

{jxu155, bsafaei1, vpatel36}@jhu.edu {shao-yuan_lo, idwivedi}@honda-ri.com

CVPR 2025

- One of the first zero-shot and reasoning methods for IAD
 - => Explain why normal/anomaly
- One of the first instruction tuning datasets and benchmarks for IAD reasoning
 - => Allow us to train and evaluate models for their AD reasoning capabilities

Problem Statement

Anomaly detection

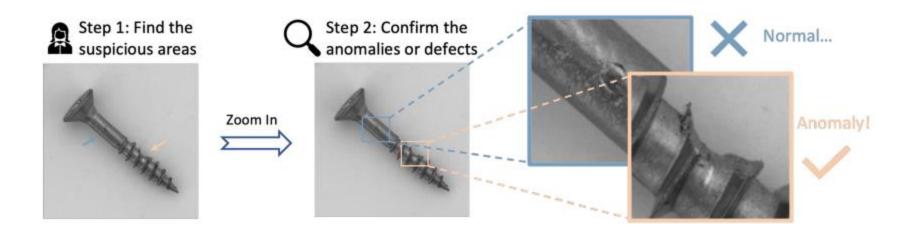
PCB Example: Excessive Solder User Are there any anomalies visible in the image? The image shows an HC-SR04 ultrasonic sensor. GPT-40 There don't appear to be any visible anomalies with the sensor itself. The components and pins seem intact and properly aligned. LLaVA-OV The image shows an ultrasonic sensor module, specifically the HC-SR04 model. There are no visible anomalies in the image; it appears to be a standard representation of this type of sensor module. Yes, there is a noticeable anomaly in the image: a short Ours circuit on the PCB, indicated by a white, crusty residue near the 'Echo' pin.

Table 3. Anomaly-OV presents more accurate anomaly detection.

Basic reasoning

Macaroni Example: Yellowish Spot User Do you see any anomalies in the image? The image shows four pieces of elbow macaroni on a GPT-40 green background. The anomaly is that the macaroni pieces are not whole; they are cut in half. The image shows four pieces of pasta, specifically LLaVA-OV macaroni shells, arranged on a green textured surface. The pasta appears to be uniformly colored and shaped, with no visible defects or anomalies. Yes, there is an anomaly in the image. The bottom right Ours pasta piece has a noticeable yellowish discoloration on its surface.

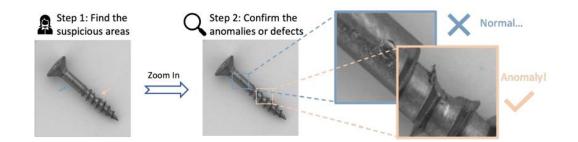
Table 5. Anomaly-OV presents more precise anomaly reasoning.

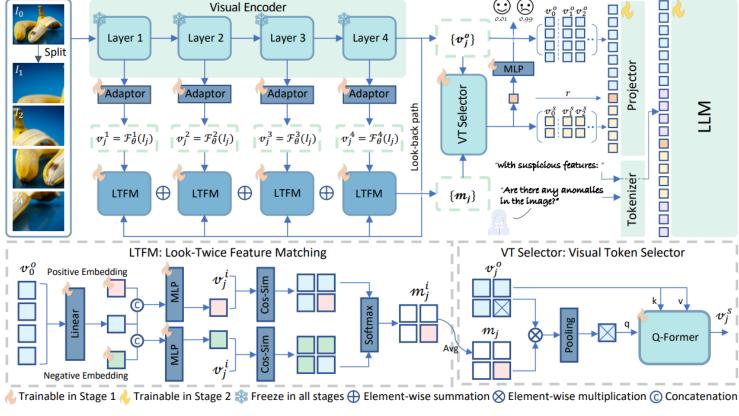

Complex reasoning

In-the-Wild Example: Graffitied Road Sign

	The state of the s
User	Describe the anomaly in the image.
Anomaly-OV	The anomaly in the image is the graffiti on the high- way sign, which includes black spray paint marks and scribbles over the word 'Seattle' and other parts of the sign.
User	What is the reason for the anomaly?
Anomaly-OV	The graffiti is likely the result of vandalism, where indi- viduals have used spray paint to deface public property for personal expression or as a form of protest.
User	How does the anomaly affect the functionality of the object?
Anomaly-OV	The graffiti affects the sign's functionality by potentially obstructing the visibility of important information, such as the word 'Seattle,' which could confuse drivers and lead to navigational errors.
User	How to avoid the anomaly in the future?
Anomaly-OV	To avoid such anomalies, regular maintenance and cleaning of signs should be implemented. Additionally, community awareness programs can help reduce vandalism by promoting respect for public property.

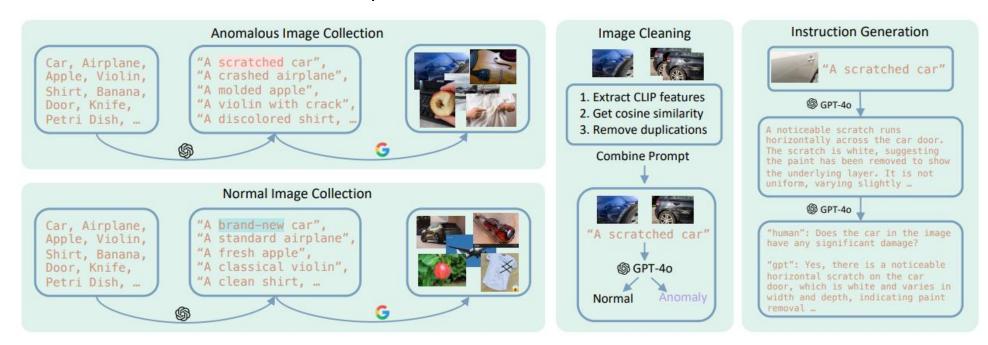
Method


- Two-step inspection for improving detection
- Simulate human's visual anomaly inspection



Method

- MLLM backbone: Visual encoder + tokenizer + projector + LLM
- LTFM: (Step 1) Find suspicious areas
- VT Selector: (Step 2) Confirm anomalies

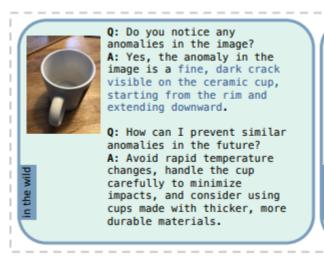

- Training stage 1: Train the anomaly expert (LTFM + VT Selector)
- Training stage 2: Visual instruction tuning (projector + LLM)

Instruction Tuning Dataset

- Visual instruction tuning (VIT) for improving reasoning
- An automatic pipeline for constructing AD VIT datasets
- WebAD: 72k, 380 classes
- MVTec AD [Bergmann et al. CVPR'19]: 5k, 15 classes

Instruction Tuning Dataset

• WebAD: 72k, 380 classes



Anomalous Normal

25

Instruction Tuning Dataset

- Anomaly-Instruct-125k
- Four types of images

Q: Are there any anomalies in this cable image?
A: Yes, the green wire is missing its internal copper conductors, unlike the blue and brown wires, which contain complete sets of bundled copper strands.

Q: What could be the reason behind this anomaly? A: The absence of copper in the green wire could be due to manufacturing defects such as failure to insert the strands or a mechanical issue where the strands were removed or misplaced during production or handling.

Q: What does the image show? A: The image shows a densely cellular tissue sample with features indicating potential metastatic breast cancer.

Q: What suggests that there might be malignant activity in the tissue sample?
A: Malignant activity is suggested by irregularly shaped cells, hyperchromatic nuclei, and an increased nuclear—to—cytoplasmic ratio, indicative of abnormal and increased DNA content typical in cancerous cells.

Q: What kind of object are you examining in the images?
A: I'm examining a round cookie with a golden-brown surface and visible chocolate chips embedded across its surface.

Q: Are there any significant anomalies detected on this cookie?

A: Yes, there are two significant anomalies on the cookie: a central defect featuring a noticeable hole and an edge defect showing a gap or crack.

WebAD-72k

[Collected by us via Google Image Search]

MVTec AD

[Bergmann et al. CVPR'19]

BMAD

[Bao et al. CVPR'24]

MVTec-3D AD
Real3D-AD
Anomaly-ShapeNet

Reasoning Benchmark

- VisA-D&R (761 normal + 1000 anomaly samples)
- **Detection metrics**: Accuracy/precision/recall/F1-score
- Reasoning metrics: ROUGE-L, Sentence-BERT, GPT-score
- Q1 & Q2: Basic reasoning
- Q3 & Q4: Complex reasoning

Detection:

Q: Are there any defects for the object in the image? Please reply with 'Yes' or 'No'.

Reasoning:

Q1: Do you observe any anomalies in the image?

Q2: Can you describe the anomalies you observed?

Q3: What is the potential cause for the anomalies?

Q4: How can such anomalies be prevented in the future?

Detection Results of Zero-Shot IAD Approaches

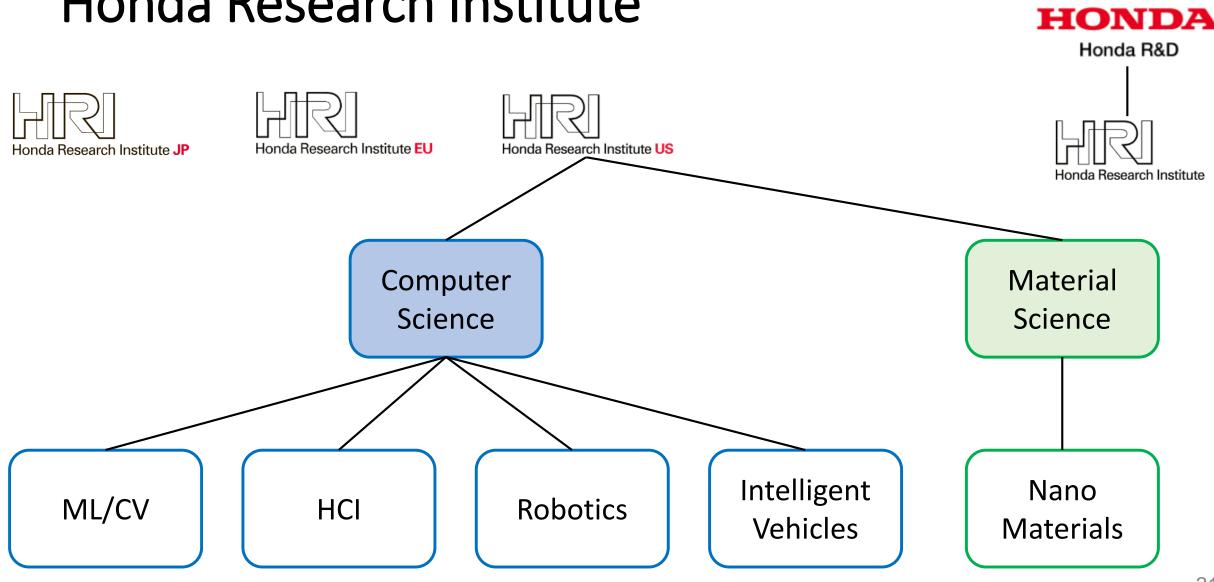
• MLLM backbone: LLaVA-OV [Li et al. 2024]

Metric: AUROC

Model		Industrial Defects							Medical Anomalies			
	MVTec AD	VisA	AITEX	ELPV	BTAD	MPDD	BrainMRI	HeadCT	Br35H	Average		
CLIP [73]	74.1	66.4	71.0	59.2	34.5	54.3	73.9	56.5	78.4	63.1		
CoOp [108]	88.8	62.8	66.2	73.0	66.8	55.1	61.3	78.4	86.0	70.9		
WinCLIP [38]	91.8	78.8	73.0	74.0	68.2	63.6	92.6	90.0	80.5	79.2		
APRIL-GAN [11]	86.2	78.0	57.6	65.5	73.6	73.0	89.3	89.1	93.1	78.4		
AnoVL [19]	92.5	79.2	<u>72.5</u>	70.6	80.3	68.9	88.7	81.6	88.4	80.3		
AnomalyCLIP [110]	91.5	82.1	62.2	81.5	88.3	<u>77.0</u>	90.3	93.4	94.6	84.5		
AdaCLIP [6]	89.2	85.8	64.5	79.7	88.6	76.0	94.8	91.4	97.7	<u>85.3</u>		
Ours	94.0	91.1	72.0	83.0	89.0	81.7	<u>93.9</u>	97.6	<u>95.5</u>	88.6		

Detection and Reasoning Results of MLLMs

- MLLM backbone: LLaVA-OV
- LLaVA-OV-0.5B*: Fine-tuned on our Anomaly-Instruct-125k


Model		Anomaly D	etection		Low-	-level Reas	Complex Reasoning		
Wilder	Accuracy	Precision	Recall	F1-score	ROUGE-L	SBERT	GPT-Score	SBERT	GPT-Score
GPT-4V [71]	0.68	0.90	0.49	0.55	0.16	0.65	3.31	0.77	5.64
GPT-4o [72]	0.70	0.83	0.71	0.68	0.24	0.71	4.84	0.81	6.89
Qwen2-VL-2B [87]	0.65	0.87	0.55	0.59	0.22	0.55	1.94	0.74	4.26
Qwen2-VL-7B [87]	0.76	0.91	0.69	0.75	0.25	0.61	3.09	0.68	4.62
InternVL-2-8B [13]	0.74	0.78	0.81	0.76	0.23	0.73	3.69	0.80	5.08
InternVL-2-26B [13]	0.73	0.86	0.66	0.68	0.21	0.74	4.13	0.80	5.49
IXC-2.5-7B [101]	0.72	0.88	0.63	0.67	0.21	0.58	2.45	0.77	5.14
LLaVA-OV-0.5B [44]	0.54	0.70	0.19	0.28	0.20	0.63	2.54	0.81	4.34
LLaVA-OV-7B [44]	0.71	0.95	0.56	0.63	0.24	0.66	3.57	0.79	5.44
LLaVA-OV-0.5B*	0.71	0.77	0.84	0.76	0.31	0.70	3.69	0.82	5.31
Anomaly-OV-0.5B	0.79	0.86	0.83	0.82	0.33	0.72	3.87	0.83	5.67
Anomaly-OV-7B	0.79	0.83	0.86	0.83	0.34	0.73	<u>4.26</u>	0.84	<u>6.34</u>

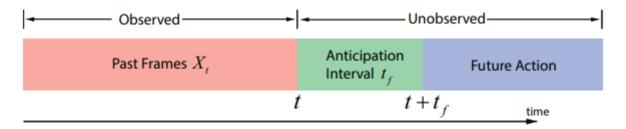
Summary

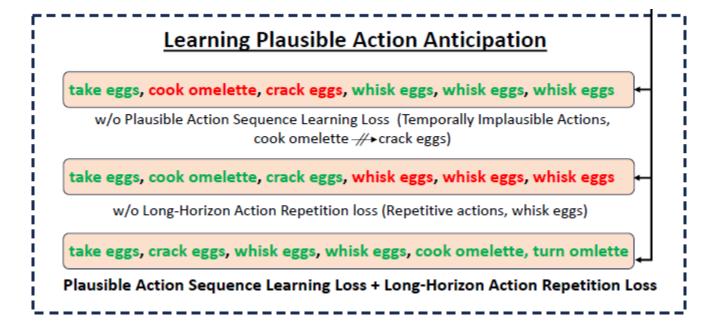
Conventional **MLLMs** ECCV 2024 How to Few-shot / Zero-shot Full-shot training Video Anomaly Detection (VAD) learn Prompting pipelines Model adaptability Detection only What to **CVPR 2025 Detection + Reasoning** (anomaly scores) output Instruction tuning data Image Anomaly Detection (IAD) New metrics

New benchmarks

Honda Research Institute

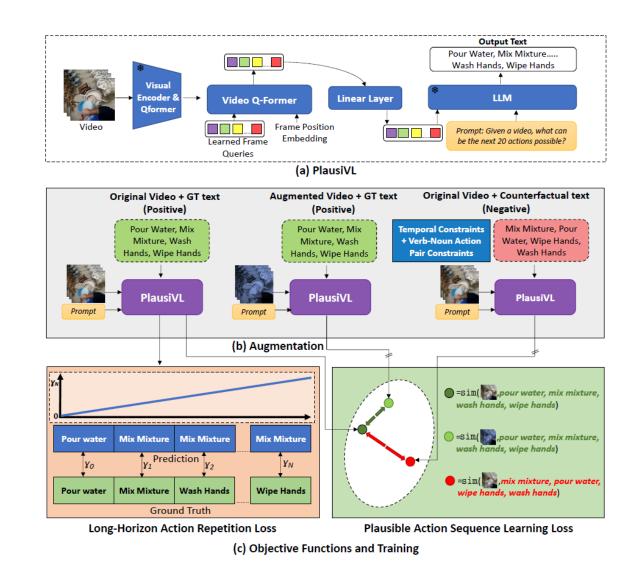
HONDA


Current Research in HRI ML/CV Team


• **Goal**: Adapt general-purpose MLLMs to domain experts for applications on vehicles or robots.

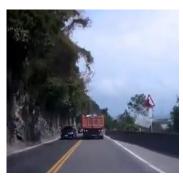
- MLLM for anomaly detection
- MLLM for action anticipation
- MLLM for affective understanding
- MLLM for Theory-of-Mind
- MLLM-based multi-agent collaboration

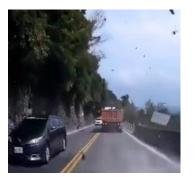
MLLM for Action Anticipation


Action anticipation aims to predict future actions given previous actions.

MLLM for Action Anticipation

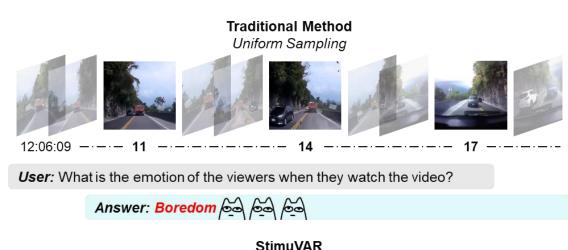
- Plausible action sequence learning loss: Help models differentiate between plausible and not plausible action sequences.
- Long-horizon action repetition loss: Put a higher penalty on the actions that are more prone to repetition over a longer temporal window.


MLLM for Affective Understanding


- Task: Predict and explain viewers' emotional responses to a video.
- Let's start from an example video.

What we see:

What models see:



MLLM for Affective Understanding

- Traditional models and generic MLLMs often overlook emotional stimuli.
- What are the emotional stimuli?
 - Capturing stimuli could reduce redundancy and improve affective understanding.
 - => Propose spatiotemporal stimuli-aware mechanisms
- Why this prediction?
 - Interpretability is crucial for model analysis and earning public trust.
 - => Create VAR visual instruction data for affective training

Event-Driven Frame Sampling & Emotion-triggered Tube Selection

User: What is the emotion of the viewers when they watch the video?

Answer: The viewer feels Surprise of production because initially, it is a typical road scene with a red truck and a silver car sets the expectation for a mundane video. However, the sudden appearance of a rock, falling onto the road introduces an unexpected element. This unexpected twist in the video content is likely to evoke surprise in the viewer

HRI hires research interns! https://usa.honda-ri.com/intern-positions

About 5 scientists in the ML/CV Team

CVPR 2025 x3

NeurIPS 2024 x2

ECCV 2024 x3

CVPR 2024 x2

Candidates with at least one first-

authored paper at a top conference

have a stronger chance.

Yuchen Yang

Kwonjoon Lee

Behzad Dariush

Yinzhi Cao

Jiacong Xu

Bardia Safaei

Vishal M. Patel

Isht Dwivedi

